skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Title: Unsolved problems: Mesoscale polar cap flow channels’ structure, propagation, and effects on space weather disturbances
Dynamic mesoscale flow structures move across the open field line regions of the polar caps and then enter the nightside plasma sheet where they can cause important space weather disturbances, such as streamers, substorms, and omega bands. The polar cap structures have long durations (apparently at least ∼1½ to 2 h), but their connections to disturbances have received little attention. Hence, it will be important to uncover what causes these flow enhancement channels, how they map to the magnetospheric and magnetosheath structures, and what controls their propagation across the polar cap and their dynamic effects after reaching the nightside auroral oval. The examples presented here use 630-nm auroral and radar observations and indicate that the motion of flow channels could be critical for determining when and where a particular disturbance within the nightside auroral oval will be triggered, and this could be included for full understanding of flow channel connections to disturbances. Also, it is important to determine how polar cap flow channels lead to flow channels within the auroral oval, i.e., the plasma sheet, and determine the conditions along nightside oval/plasma sheet field lines that interact with an incoming polar cap flow channel to cause a particular disturbance. It will also be interesting to consider the generality of geomagnetic disturbances being related to connections with incoming polar cap flow channels, including the location, time, and type of disturbances, and whether the duration and expansion of disturbances are related to flow channel duration and to multiple flow channels.  more » « less
Award ID(s):
2055192 2100975 1907698
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Frontiers in Astronomy and Space Sciences
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Polar cap ionospheric plasma flow studies often focus on large‐scale averaged properties and neglect the mesoscale component. However, recent studies have shown that mesoscale flows are often found to be collocated with airglow patches. These mesoscale flows are typically a few hundred meters per second faster than the large‐scale background and are associated with major auroral intensifications when they reach the poleward boundary of the nightside auroral oval. Patches often also contain ionospheric signatures of enhanced field‐aligned currents and localized electron flux enhancements, indicating that patches are associated with magnetosphere‐ionosphere coupling on open field lines. However, magnetospheric measurements of this coupling are lacking, and it has not been understood what the magnetospheric signatures of patches on open field lines are. The work presented here explores the magnetospheric counterpart of patches and the role these structures have in plasma transport across the open field‐line region in the magnetosphere. Using red‐line emission measurements from the Resolute Bay Optical Mesosphere Thermosphere Imager, and magnetospheric measurements made by the Cluster spacecraft, conjugate events from 2005 to 2009 show that lobe measurements on field lines connected to patches display (1) electric field enhancements, (2) Region 1 sense field‐aligned currents, (3) field‐aligned enhancements in soft electron flux, (4) downward Poynting fluxes, and (5) in some cases enhancements in ion flux, including ion outflows. These observations indicate that patches highlight a localized fast flow channel system that is driven by the magnetosphere and propagates from the dayside to the nightside, most likely being initiated by enhanced localized dayside reconnection.

    more » « less
  2. Abstract

    Auroral observations were first to identify the substorm, and later used to propose that substorm onset is triggered in the inner plasma sheet (equatorward portion of the auroral oval) by an intrusion of low entropy plasma comprising plasma sheet flow channels. Longitudinal localization makes the intruding flow channels difficult to observe with spacecraft. However, they are detectable in the ionosphere via the broader, two‐dimensional coverage by radars. Line‐of‐sight radar flow measurements have provided considerable support for the onset proposal. Here we use two‐dimensional, ionospheric flow maps for further testing. Since these maps are derived without the smoothing from global fits typically used for global convection maps, their spatial resolution is significantly improved, allowing representation of localized spatial structures. These maps show channels of enhanced ionospheric flow intruding to the time and location of substorm onset. We also see evidence that these intruding flows enter the plasma sheet from the polar cap, and that azimuthal spread of the reduced entropy plasma in the inner plasma sheet contributes to azimuthal onset spreading after initial onset. Identified events with appropriate radar data remain limited, but we have found no exceptions to consistency with flow channel triggering. Thus, these analyses strongly support the proposal that substorm onset is due to the intrusion of new plasma to the onset region. The lower entropy of the new plasma likely changes the entropy distribution of inner plasma sheet, a change possibly important for the substorm onset instability seen via the growing waves that demarcate substorm auroral onset.

    more » « less
  3. Flow bursts are a major component of transport within the plasma sheet and auroral oval (where they are referred to as flow channels), and lead to a variety of geomagnetic disturbances as they approach the inner plasma sheet (equatorward portion of the auroral oval). However, their two-dimensional structure as they approach the inner plasma sheet has received only limited attention. We have examined this structure using both the Rice Convection Model (RCM) and ground-based radar and all sky imager observations. As a result of the energy dependent magnetic drift, the low entropy plasma of a flow burst spreads azimuthally within the inner plasma sheet yielding specific predictions of subauroral polarization stream (SAPS) and dawnside auroral polarization stream (DAPS) enhancements that are related to the field-aligned currents associated with the flow channel. Flow channels approximately centered between the dawn and dusk large-scale convection cells are predicted to give significant enhancements of both SAPS and DAPS, whereas flow channel further toward the dusk (dawn) convection cell show a far more significant enhancement of SAPS (DAPS) than for DAPS (SAPS). We present observations for cases having good coverage of flow channels as they approach the equatorward portion of the auroral oval and find very good qualitative agreement with the above RCM predictions, including the predicted differences with respect to flow burst location. Despite there being an infinite variety of flow channels’ plasma parameters and of background plasma sheet and auroral oval conditions, the observations show the general trends predicted by the RCM simulations with the idealized parameters. This supports that RCM predictions of the azimuthal spread of a low-entropy plasma sheet plasma and its associated FAC and flow responses give a realistic physical description of the structure of plasma sheet flow bursts (auroral oval flow channels) as they reach the inner plasma sheet (near the equatorward edge of the auroral oval). 
    more » « less
  4. Abstract

    In this paper, we present a case study of the radial interplanetary magnetic field (IMFBx)‐induced asymmetric solar wind‐magnetosphere‐ionosphere (SW‐M‐I) coupling between the northern and southern polar caps using ground‐based and satellite‐based data. Under prolonged conditions of strong earthward IMF on 5 March 2015, we find significant discrepancies between polar cap north (PCN) and polar cap south (PCS) magnetic indices with a negative bay‐like change in the PCN and a positive bay‐like change in the PCS. The difference between these indices (PCN‐PCS) reaches a minimum of −1.63 mV/m, which is approximately three times higher in absolute value than the values for most of the time on this day (within ±0.5 mV/m). The high‐latitude plasma convection also shows an asymmetric feature such that there exists an additional convection cell near the noon sector in the northern polar cap, but not in the southern polar cap. Meanwhile, negative bays in the north‐south component of ground magnetic field perturbations (less than 50 nT) observed in the nightside auroral region of the Northern Hemisphere are accompanied with the brightening and widening of the nightside auroral oval in the Southern Hemisphere, implying a weak, but clear energy transfer to the nightside ionosphere of both hemispheres. After the hemispheric asymmetries in the polar caps disappear, a substorm onset takes place. All these observations indicate that IMFBx‐induced single lobe reconnection that occurred in the Northern Hemisphere plays an important role in hemispheric asymmetry in the energy transfer from the solar wind to the polar cap through the magnetosphere.

    more » « less
  5. Abstract

    Following substorm auroral onset, the active aurora region usually expands poleward toward the poleward auroral boundary. Such poleward expansion is often associated with a bulge region that expands westward and forms the westward travelling surge. In this study, we show all‐sky imager and Poker Flat Advanced Modular Incoherent Scatter Radar observations of two surge events to investigate the relationship between the surge and ionospheric flows that likely have polar cap origin. For both events, we observe auroral streamers, with an adjacent flow channel consisting of decreased density and low electron temperature plasma flowing equatorward. This flow channel appears to impinge and lead/feed surge formation, and to stay connected to the surge as it moves westward. Also, for both events, streamer observations indicate that, following initial surge development, similar flows led to explosive surge enhancements. The observation that the streamers are connected to the auroral polar boundary and that the flow channels consisted of low density, low electron temperature plasma suggests the possibility that the impinging plasma came from the polar cap. For both events, the altitude variations of F region plasma within the surges are related with aurora emission and the poleward/equatorward flow, and the surges develop strong auroral streamers that initiate along the poleward auroral boundary when contacted with the flow. These results suggest that the flow of polar cap origin, which maps to underlying processes in the magnetotail, may play a crucial role in auroral surges by feeding low entropy plasma into surge initiation and development, and also playing an important role in the dynamics within a surge.

    more » « less