skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Heat stored in the Earth system 1960–2020: where does the energy go?
Abstract. The Earth climate system is out of energy balance, and heat hasaccumulated continuously over the past decades, warming the ocean, the land,the cryosphere, and the atmosphere. According to the Sixth Assessment Reportby Working Group I of the Intergovernmental Panel on Climate Change,this planetary warming over multiple decades is human-driven and results inunprecedented and committed changes to the Earth system, with adverseimpacts for ecosystems and human systems. The Earth heat inventory providesa measure of the Earth energy imbalance (EEI) and allows for quantifyinghow much heat has accumulated in the Earth system, as well as where the heat isstored. Here we show that the Earth system has continued to accumulateheat, with 381±61 ZJ accumulated from 1971 to 2020. This is equivalent to aheating rate (i.e., the EEI) of 0.48±0.1 W m−2. The majority,about 89 %, of this heat is stored in the ocean, followed by about 6 %on land, 1 % in the atmosphere, and about 4 % available for meltingthe cryosphere. Over the most recent period (2006–2020), the EEI amounts to0.76±0.2 W m−2. The Earth energy imbalance is the mostfundamental global climate indicator that the scientific community and thepublic can use as the measure of how well the world is doing in the task ofbringing anthropogenic climate change under control. Moreover, thisindicator is highly complementary to other established ones like global meansurface temperature as it represents a robust measure of the rate of climatechange and its future commitment. We call for an implementation of theEarth energy imbalance into the Paris Agreement's Global Stocktake based onbest available science. The Earth heat inventory in this study, updated fromvon Schuckmann et al. (2020), is underpinned by worldwide multidisciplinarycollaboration and demonstrates the critical importance of concertedinternational efforts for climate change monitoring and community-basedrecommendations and we also call for urgently needed actions for enablingcontinuity, archiving, rescuing, and calibrating efforts to assure improvedand long-term monitoring capacity of the global climate observing system. The data for the Earth heat inventory are publicly available, and more details are provided in Table 4.  more » « less
Award ID(s):
1950077 1744587 1948482 2023545
PAR ID:
10416724
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
Earth System Science Data
Volume:
15
Issue:
4
ISSN:
1866-3516
Page Range / eLocation ID:
1675 to 1709
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract. Human-induced atmospheric composition changes cause a radiative imbalance atthe top of the atmosphere which is driving global warming. This Earth energy imbalance (EEI) is the most critical number defining the prospects for continued global warming and climate change. Understanding the heat gain ofthe Earth system – and particularly how much and where the heat isdistributed – is fundamental to understanding how this affects warmingocean, atmosphere and land; rising surface temperature; sea level; and lossof grounded and floating ice, which are fundamental concerns for society.This study is a Global Climate Observing System (GCOS) concertedinternational effort to update the Earth heat inventory and presents anupdated assessment of ocean warming estimates as well as new and updated estimatesof heat gain in the atmosphere, cryosphere and land over the period1960–2018. The study obtains a consistent long-term Earth system heat gainover the period 1971–2018, with a total heat gain of 358±37 ZJ,which is equivalent to a global heating rate of 0.47±0.1 W m−2.Over the period 1971–2018 (2010–2018), the majority of heat gain is reportedfor the global ocean with 89 % (90 %), with 52 % for both periods inthe upper 700 m depth, 28 % (30 %) for the 700–2000 m depth layer and 9 % (8 %) below 2000 m depth. Heat gain over land amounts to 6 %(5 %) over these periods, 4 % (3 %) is available for the melting ofgrounded and floating ice, and 1 % (2 %) is available for atmospheric warming. Ourresults also show that EEI is not only continuing, but also increasing: the EEIamounts to 0.87±0.12 W m−2 during 2010–2018. Stabilization ofclimate, the goal of the universally agreed United Nations Framework Convention on ClimateChange (UNFCCC) in 1992 and the ParisAgreement in 2015, requires that EEI be reduced to approximately zero toachieve Earth's system quasi-equilibrium. The amount of CO2 in theatmosphere would need to be reduced from 410 to 353 ppm to increase heatradiation to space by 0.87 W m−2, bringing Earth back towards energybalance. This simple number, EEI, is the most fundamental metric that thescientific community and public must be aware of as the measure of how wellthe world is doing in the task of bringing climate change under control, andwe call for an implementation of the EEI into the global stocktake based onbest available science. Continued quantification and reduced uncertaintiesin the Earth heat inventory can be best achieved through the maintenance ofthe current global climate observing system, its extension into areas ofgaps in the sampling, and the establishment of an international framework forconcerted multidisciplinary research of the Earth heat inventory aspresented in this study. This Earth heat inventory is published at the German Climate Computing Centre (DKRZ, https://www.dkrz.de/, last access: 7 August 2020) under the DOIhttps://doi.org/10.26050/WDCC/GCOS_EHI_EXP_v2(von Schuckmann et al., 2020). 
    more » « less
  2. Abstract The historical evolution of Earth’s energy imbalance can be quantified by changes in the global ocean heat content. However, historical reconstructions of ocean heat content often neglect a large volume of the deep ocean, due to sparse observations of ocean temperatures below 2000 m. Here, we provide a global reconstruction of historical changes in full-depth ocean heat content based on interpolated subsurface temperature data using an autoregressive artificial neural network, providing estimates of total ocean warming for the period 1946-2019. We find that cooling of the deep ocean and a small heat gain in the upper ocean led to no robust trend in global ocean heat content from 1960-1990, implying a roughly balanced Earth energy budget within −0.16 to 0.06 W m −2 over most of the latter half of the 20th century. However, the past three decades have seen a rapid acceleration in ocean warming, with the entire ocean warming from top to bottom at a rate of 0.63 ± 0.13 W m −2 . These results suggest a delayed onset of a positive Earth energy imbalance relative to previous estimates, although large uncertainties remain. 
    more » « less
  3. Abstract Terrestrial, aquatic, and marine ecosystems regulate climate at local to global scales through exchanges of energy and matter with the atmosphere and assist with climate change mitigation through nature‐based climate solutions. Climate science is no longer a study of the physics of the atmosphere and oceans, but also the ecology of the biosphere. This is the promise of Earth system science: to transcend academic disciplines to enable study of the interacting physics, chemistry, and biology of the planet. However, long‐standing tension in protecting, restoring, and managing forest ecosystems to purposely improve climate evidences the difficulties of interdisciplinary science. For four centuries, forest management for climate betterment was argued, legislated, and ultimately dismissed, when nineteenth century atmospheric scientists narrowly defined climate science to the exclusion of ecology. Today's Earth system science, with its roots in global models of climate, unfolds in similar ways to the past. With Earth system models, geoscientists are again defining the ecology of the Earth system. Here we reframe Earth system science so that the biosphere and its ecology are equally integrated with the fluid Earth to enable Earth system prediction for planetary stewardship. Central to this is the need to overcome an intellectual heritage to the models that elevates geoscience and marginalizes ecology and local land knowledge. The call for kilometer‐scale atmospheric and ocean models, without concomitant scientific and computational investment in the land and biosphere, perpetuates the geophysical view of Earth and will not fully provide the comprehensive actionable information needed for a changing climate. 
    more » « less
  4. Widespread expansion of agriculture and forestry has altered the surface of the Earth, the composition of the atmosphere, and as a result, the climate. Here we quantify the radiative forcing caused by the deforestation of an ecoregion of the U.S. Upper Midwest and the adoption of eight nature-based climate solutions. We combined forest inventory data with over three decades of remote sensing and in situ data from a replicated land use change experiment. Deforestation of the region caused net global warming (1626 ± 44 µW m-2), mainly from the 76 % reduction of ecosystem carbon stocks, but also from the 84 % reduction of the soil methane sink and the 115 % increase in soil nitrous oxide emissions. The associated albedo increase offset 24 % of the greenhouse gas induced warming. For the adoption of nature-based climate solutions, we found that conservation agriculture provided a modest -39 to -76 ± 31 µW m-2 of climate mitigation, short/medium length forestry rotations provided more at -296 to -881 ± 44 µW m-2, and natural forest regeneration provided the most at -1555 ± 44 µW m-2. As the impacts of climate change on nature and society intensify, consideration should be given to the climate mitigation, habitat, and ecosystem services that nature-based climate solutions can provide. 
    more » « less
  5. Abstract Earth’s energy imbalance (EEI) is a fundamental metric of global Earth system change, quantifying the cumulative impact of natural and anthropogenic radiative forcings and feedback. To date, the most precise measurements of EEI change are obtained through radiometric observations at the top of the atmosphere (TOA), while the quantification of EEI absolute magnitude is facilitated through heat inventory analysis, where ~ 90% of heat uptake manifests as an increase in ocean heat content (OHC). Various international groups provide OHC datasets derived from in situ and satellite observations, as well as from reanalyses ingesting many available observations. The WCRP formed the GEWEX-EEI Assessment Working Group to better understand discrepancies, uncertainties and reconcile current knowledge of EEI magnitude, variability and trends. Here, 21 OHC datasets and ocean heat uptake (OHU) rates are intercompared, providing OHU estimates ranging between 0.40 ± 0.12 and 0.96 ± 0.08 W m−2(2005–2019), a spread that is slightly reduced when unequal ocean sampling is accounted for, and that is largely attributable to differing source data, mapping methods and quality control procedures. The rate of increase in OHU varies substantially between − 0.03 ± 0.13 (reanalysis product) and 1.1 ± 0.6 W m−2 dec−1(satellite product). Products that either more regularly observe (satellites) or fill in situ data-sparse regions based on additional physical knowledge (some reanalysis and hybrid products) tend to track radiometric EEI variability better than purely in situ-based OHC products. This paper also examines zonal trends in TOA radiative fluxes and the impact of data gaps on trend estimates. The GEWEX-EEI community aims to refine their assessment studies, to forge a path toward best practices, e.g., in uncertainty quantification, and to formulate recommendations for future activities. 
    more » « less