skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00PM ET on Friday, December 15 until 2:00 AM ET on Saturday, December 16 due to maintenance. We apologize for the inconvenience.

This content will become publicly available on May 30, 2024

Title: On-demand harmonic wave suppression in non-Hermitian space-time-periodic phased arrays
Abstract Phased arrays have been a cornerstone of non-destructive evaluation, sonar communications, and medical imaging for years. Conventional arrays work by imparting a static phase gradient across a set of transducers to steer a self-created wavefront in a desired direction. Most recently, space-time-periodic (STP) phased arrays have been explored in the context of multi-harmonic wave beaming. Owing to the STP phase profile, multiple scattered harmonics of a single-frequency input are generated which propagate simultaneously in different directional lanes. Each of these lanes is characterized by a principal angle and a distinct frequency signature that can be computationally predicted. However, owing to the Hermitian (real) nature of the spatiotemporal phase gradient, waves emergent from the array are still bound to propagate simultaneously along up- and down-converted directions with a perfectly symmetric energy distribution. Seeking to push this boundary, this paper presents a class of non-Hermitian STP phased arrays which exercise a degree of unprecedented control over the transmitted waves through an interplay between gain, loss, and coupling between its individual components. A complex phase profile under two special symmetries, parity-time (PT) and anti-PT, is introduced that enables the modulation of the amplitude of various harmonics and decouples up- and down-converted harmonics of the same order. We show that these arrays provide on-demand suppression of either up- or down-converted harmonics at an exceptional point—a degeneracy in the parameter space where the system’s eigenvalues and eigenvectors coalesce. An experimental prototype of the non-Hermitian array is constructed to illustrate the selective directional suppression via time-transient measurements of the out-of-plane displacements of an elastic substrate via laser vibrometry. The theory of non-Hermitian phased arrays and their experimental realization unlock rich opportunities in precise elastoacoustic wave manipulation that can be tailored for a diverse range of engineering applications.  more » « less
Award ID(s):
1904254 1847254
Author(s) / Creator(s):
Date Published:
Journal Name:
Smart Materials and Structures
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Acoustic phased arrays are capable of steering and focusing a beam of sound via selective coordination of the spatial distribution of phase angles between multiple sound emitters. Constrained by the principle of reciprocity, conventional phased arrays exhibit identical transmission and reception patterns which limit the scope of their operation. This work presents a controllable space–time acoustic phased array which breaks time-reversal symmetry, and enables phononic transition in both momentum and energy spaces. By leveraging a dynamic phase modulation, the proposed linear phased array is no longer bound by the acoustic reciprocity, and supports asymmetric transmission and reception patterns that can be tuned independently at multiple channels. A foundational framework is developed to characterize and interpret the emergent nonreciprocal phenomena and is later validated against benchmark numerical experiments. The new phased array selectively alters the directional and frequency content of the incident signal and imparts a frequency conversion between different wave fields, which is further analyzed as a function of the imposed modulation. The space–time acoustic phased array enables unprecedented control over sound waves in a variety of applications ranging from ultrasonic imaging to non-destructive testing and underwater SONAR telecommunication.

    more » « less
  2. Metasurfaces exhibiting spatially asymmetric inner structures have been shown to host unidirectional scattering effects, benefiting areas where directional control of waves is desired. In this work, we propose a non-Hermitian planar elastic metasurface to achieve unidirectional focusing of flexural waves. The unit cells are constructed by piezoelectric disks and metallic blocks that are asymmetrically loaded. A tunable material loss is then introduced by negative capacitance shunting. By suitably engineering the induced loss profile, a series of unit cells are designed, which can individually access the exceptional points manifested by unidirectional zero reflection. We then construct a planar metasurface by tuning the reflected phase to ensure constructive interference at one side of the metasurface. Unidirectional focusing of the incident waves is demonstrated, where the reflected wave energy is focused from one direction, and zero reflection is observed in the other direction. The proposed metasurface enriches the flexibility in asymmetric elastic wave manipulation as the loss and the reflected phase can be tailored independently in each unit cell. 
    more » « less
  3. null (Ed.)
    Phased arrays, commonly used in IEEE 802.11ad and 5G radios, are capable of focusing radio frequency signals in a specific direction or a spatial region. Beamforming achieves such directional or spatial concentration of signals and enables phased array-based radios to achieve high data rates. Designing beams for millimeter wave and terahertz communication using massive phased arrays, however, is challenging due to hardware constraints and the wide bandwidth in these systems. For example, beams which are optimal at the center frequency may perform poor in wideband communication systems where the radio frequencies differ substantially from the center frequency. The poor performance in such systems is due to differences in the optimal beamformers corresponding to distinct radio frequencies within the wide bandwidth. Such a mismatch leads to a misfocus effect in near-field systems and the beam squint effect in far-field systems. In this paper, we investigate the misfocus effect and propose InFocus, a low complexity technique to construct beams that are well suited for massive wideband phased arrays. The beams are constructed using a carefully designed frequency modulated waveform in the spatial dimension. InFocus mitigates beam misfocus and beam squint when applied to near-field and far-field systems. 
    more » « less
  4. This paper discusses wave-by-wave near-optimal control of a wave energy device in irregular waves. A deterministic propagation model is used to predict the wave elevation several seconds into the future at the device location. Two prediction approaches are considered. The first is based on a time series being measured over an advancing time window at a particular up-wave location. This approach is here utilized in long-crested irregular waves. The second approach uses successive snapshots of wave elevation measurements over an up-wave area. This approach is found more convenient for multi-directional waves, and is here applied in a bi-directional wave irregular wave field. A small, heaving vertical cylinder reacting against a deeply submerged (i.e. assumed to undergo negligible oscillations) mass is studied under wave-by-wave control. The non-causal feedforward control force required for optimum velocity under a swept-volume constraint is based on the past, current, and predicted wave elevation at the device. Results for time-averaged converted power and displacement/force maxima are obtained for a range of irregular wave conditions. Also presented in addition are energy conversion results with a feedback-alone control force using a multi-resonant control technique. 
    more » « less
  5. Abstract—Millimeter wave wireless spectrum deployments will allow vehicular communications to share high data rate vehicular sensor data in real-time.The highly directional nature of wireless links in millimeter spectral bands will require continuous channel measurements to ensure the transmitter (TX) and receiver (RX) beams are aligned to provide the best channel. Using real-world vehicular mmWave measurement data at 28GHz, we determine the optimal beam sweeping period, i.e. the frequency of the channel measurements,to align the RX beams to the best channel directions for maximizing the vehicle-to-infrastructure (V2I) throughput.We show that in a realistic vehicular traffic environment in Austin,TX, for a vehicle traveling at an average speed of 10.5mph,a beam sweeping period of 300 ms in future V2I communication standards would maximize theV2I throughput,using a system of four RX phased arrays that scanned the channel 360 degrees in the azimuth and 30 degrees above and below the boresight.We also investigate the impact of the number of active RX chains controlling the steerable phased arrays on V2I throughput. Reducing the number of RX chains controlling the phased arrays helps reduce the cost of the vehicular mmWave hardware while multiple RX chains, although more expensive,provide more robustness to beam direction changes at the vehicle,allowing near maximum throughput over a wide range of beam sweep periods.We show that the overhead of utilizing one RX chain instead of four leads to a10% drop in mean V2I throughput over six non-line- of-sight runs in real traffic conditions, with each run being 10 to 20 seconds long over a distance of 40 to 90 meters. Index Terms—mmWave;beam management;channel sound- ing; phased arrays;V2X;V2V;5G;sidelink 
    more » « less