skip to main content


Title: Online Learning to Transport via the Minimal Selection Principle
Motivated by robust dynamic resource allocation in operations research, we study the Online Learning to Transport (OLT) problem where the decision variable is a probability measure, an infinite-dimensional object. We draw connections between online learning, optimal transport, and partial differential equations through an insight called the minimal selection principle, originally studied in the Wasserstein gradient flow setting by Ambrosio et al. (2005). This allows us to extend the standard online learning framework to the infinite-dimensional setting seamlessly. Based on our framework, we derive a novel method called the minimal selection or exploration (MSoE) algorithm to solve OLT problems using mean-field approximation and discretization techniques. In the displacement convex setting, the main theoretical message underpinning our approach is that minimizing transport cost over time (via the minimal selection principle) ensures optimal cumulative regret upper bounds. On the algorithmic side, our MSoE algorithm applies beyond the displacement convex setting, making the mathematical theory of optimal transport practically relevant to non-convex settings common in dynamic resource allocation.  more » « less
Award ID(s):
2042473
NSF-PAR ID:
10417128
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of Machine Learning Research
Volume:
178
Issue:
COLT 2022
ISSN:
2640-3498
Page Range / eLocation ID:
4085--4109
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The rapid growth of mobile data traffic is straining cellular networks. A natural approach to alleviate cellular networks congestion is to use, in addition to the cellular interface, secondary interfaces such as WiFi, Dynamic spectrum and mmWave to aid cellular networks in handling mobile traffic. The fundamental question now becomes: How should traffic be distributed over different interfaces, taking into account different application QoS requirements and the diverse nature of radio interfaces. To this end, we propose the Discounted Rate Utility Maximization (DRUM) framework with interface costs as a means to quantify application preferences in terms of throughput, delay, and cost. The flow rate allocation problem can be formulated as a convex optimization problem. However, solving this problem requires non-causal knowledge of the time-varying capacities of all radio interfaces. To this end, we propose an online predictive algorithm that exploits the predictability of wireless connectivity for a small look-ahead window w. We show that, under some mild conditions, the proposed algorithm achieves a constant competitive ratio independent of the time horizon T. Furthermore, the competitive ratio approaches 1 as the prediction window increases. We also propose another predictive algorithm based on the "Receding Horizon Control" principle from control theory that performs very well in practice. Numerical simulations serve to validate our formulation, by showing that under the DRUM framework: the more delay-tolerant the flow, the less it uses the cellular network, preferring to transmit in high rate bursts over the secondary interfaces. Conversely, delay-sensitive flows consistently transmit irrespective of different interfaces' availability. Simulations also show that the proposed online predictive algorithms have a near-optimal performance compared to the offline prescient solution under all considered scenarios. 
    more » « less
  2. We consider the problem of dividing limited resources to individuals arriving over T rounds. Each round has a random number of individuals arrive, and individuals can be characterized by their type (i.e., preferences over the different resources). A standard notion of fairness in this setting is that an allocation simultaneously satisfy envy-freeness and efficiency. The former is an individual guarantee, requiring that each agent prefers the agent’s own allocation over the allocation of any other; in contrast, efficiency is a global property, requiring that the allocations clear the available resources. For divisible resources, when the number of individuals of each type are known up front, the desiderata are simultaneously achievable for a large class of utility functions. However, in an online setting when the number of individuals of each type are only revealed round by round, no policy can guarantee these desiderata simultaneously, and hence, the best one can do is to try and allocate so as to approximately satisfy the two properties. We show that, in the online setting, the two desired properties (envy-freeness and efficiency) are in direct contention in that any algorithm achieving additive counterfactual envy-freeness up to a factor of L T necessarily suffers an efficiency loss of at least [Formula: see text]. We complement this uncertainty principle with a simple algorithm, Guarded-Hope, which allocates resources based on an adaptive threshold policy and is able to achieve any fairness–efficiency point on this frontier. Our results provide guarantees for fair online resource allocation with high probability for multiple resource and multiple type settings. In simulation results, our algorithm provides allocations close to the optimal fair solution in hindsight, motivating its use in practical applications as the algorithm is able to adapt to any desired fairness efficiency trade-off. Funding: This work was supported by the National Science Foundation [Grants ECCS-1847393, DMS-1839346, CCF-1948256, and CNS-1955997] and the Army Research Laboratory [Grant W911NF-17-1-0094]. Supplemental Material: The online appendix is available at https://doi.org/10.1287/opre.2022.2397 . 
    more » « less
  3. The emergence of diverse network applications demands more flexible and responsive resource allocation for networks. Network slicing is a key enabling technology that provides each network service with a tailored set of network resources to satisfy specific service requirements. The focus of this paper is the network slicing of access networks realized by Passive Optical Networks (PONs). This paper proposes a learning-based Dynamic Bandwidth Allocation (DBA) algorithm for PON access networks, considering slice-awareness, demand-responsiveness, and allocation fairness. Our online convex optimization-based algorithm learns the implicit traffic trend over time and determines the most robust window allocation that reduces the average latency. Our simulation results indicate that the proposed algorithm reduces the average latency by prioritizing delay-sensitive and heavily-loaded ONUs while guaranteeing a minimal window allocation to all ONUs. 
    more » « less
  4. Large-scale online recommendation systems must facilitate the allocation of a limited number of items among competing users while learning their preferences from user feedback. As a principled way of incorporating market constraints and user incentives in the design, we consider our objectives to be two-fold: maximal social welfare with minimal instability. To maximize social welfare, our proposed framework enhances the quality of recommendations by exploring allocations that optimistically maximize the rewards. To minimize instability, a measure of users' incentives to deviate from recommended allocations, the algorithm prices the items based on a scheme derived from the Walrasian equilibria. Though it is known that these equilibria yield stable prices for markets with known user preferences, our approach accounts for the inherent uncertainty in the preferences and further ensures that the users accept their recommendations under offered prices. To the best of our knowledge, our approach is the first to integrate techniques from combinatorial bandits, optimal resource allocation, and collaborative filtering to obtain an algorithm that achieves sub-linear social welfare regret as well as sub-linear instability. Empirical studies on synthetic and real-world data also demonstrate the efficacy of our strategy compared to approaches that do not fully incorporate all these aspects. 
    more » « less
  5. Integrating regularization methods with standard loss functions such as the least squares, hinge loss, etc., within a regression framework has become a popular choice for researchers to learn predictive models with lower variance and better generalization ability. Regularizers also aid in building interpretable models with high-dimensional data which makes them very appealing. It is observed that each regularizer is uniquely formulated in order to capture data-specific properties such as correlation, structured sparsity and temporal smoothness. The problem of obtaining a consensus among such diverse regularizers while learning a predictive model is extremely important in order to determine the optimal regularizer for the problem. The advantage of such an approach is that it preserves the simplicity of the final model learned by selecting a single candidate model which is not the case with ensemble methods as they use multiple candidate models for prediction. This is called the consensus regularization problem which has not received much attention in the literature due to the inherent difficulty associated with learning and selecting a model from an integrated regularization framework. To solve this problem, in this paper, we propose a method to generate a committee of non-convex regularized linear regression models, and use a consensus criterion to determine the optimal model for prediction. Each corresponding non-convex optimization problem in the committee is solved efficiently using the cyclic-coordinate descent algorithm with the generalized thresholding operator. Our Consensus RegularIzation Selection based Prediction (CRISP) model is evaluated on electronic health records (EHRs) obtained from a large hospital for the congestive heart failure readmission prediction problem. We also evaluate our model on high-dimensional synthetic datasets to assess its performance. The results indicate that CRISP outperforms several state-of-the-art methods such as additive, interactions-based and other competing non-convex regularized linear regression methods. 
    more » « less