skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximum Likelihood Structured Covariance Matrix Estimation and connections to SBL: A Path to Gridless DoA Estimation
In this paper, we revisit the framework for maximum likelihood estimation (MLE) as applied to parametric models with an aim to estimate the parameter of interest in a gridless manner. The approach has inherent connections to the sparse Bayesian learning (SBL) formulation, and naturally leads to the problem of structured matrix recovery (SMR). We therefore pose the parameter estimation problem as a SMR problem, and recover the parameter of interest by appealing to the Carathéodory-Fejér result on decomposition of positive semi-definite Toeplitz matrices. We propose an iterative algorithm to estimate the structured covariance matrix; each iteration solves a semi-definite program. We numerically compare the performance with other gridless schemes in literature and demonstrate the superior performance of the proposed technique  more » « less
Award ID(s):
2124929
PAR ID:
10417289
Author(s) / Creator(s):
;
Date Published:
Journal Name:
2022 56th Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, USA, 2022
Page Range / eLocation ID:
970 to 974
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Gridless direction-of-arrival (DOA) estimation with multiple frequencies can be applied in acoustics source localization problems. We formulate this as an atomic norm minimization (ANM) problem and derive an equivalent regularization-free semi-definite program (SDP) thereby avoiding regularization bias. The DOA is retrieved using a Vandermonde decomposition on the Toeplitz matrix obtained from the solution of the SDP. We also propose a fast SDP program to deal with non-uniform array and frequency spacing. For non-uniform spacings, the Toeplitz structure will not exist, but the DOA is retrieved via irregular Vandermonde decomposition (IVD), and we theoretically guarantee the existence of the IVD. We extend ANM to the multiple measurement vector (MMV) cases and derive its equivalent regularization-free SDP. Using multiple frequencies and the MMV model, we can resolve more sources than the number of physical sensors for a uniform linear array. Numerical results demonstrate that the regularization-free framework is robust to noise and aliasing, and it overcomes the regularization bias. 
    more » « less
  2. Gridless direction-of-arrival (DOA) estimation with multiple frequencies can be applied to acoustic source localization. We formulate this as an atomic norm minimization (ANM) problem and derive a regularization-free semi-definite program (SDP) avoiding regularization bias. We also propose a fast SDP program to deal with non-uniform frequency spacing. The DOA is retrieved via irregular Vandermonde decomposition (IVD), and we theoretically guarantee the existence of the IVD. We extend ANM to the multiple measurement vector setting and derive its equivalent regularization-free SDP. For a uniform linear array using multiple frequencies, we can resolve more sources than the sensors. The effectiveness of the proposed framework is demonstrated via numerical experiments. 
    more » « less
  3. Blind sensor calibration for spectrum estimation is the problem of estimating the unknown sensor calibration parameters as well as the parameters-of-interest of the impinging signals simultaneously from snapshots of measurements obtained from an array of sensors. In this paper, we consider blind phase and gain calibration (BPGC) problem for direction-of-arrival estimation with multiple snapshots of measurements obtained from an uniform array of sensors, where each sensor is perturbed by an unknown gain and phase parameter. Due to the unknown sensor and signal parameters, BPGC problem is a highly nonlinear problem. Assuming that the sources are uncorrelated, the covariance matrix of the measurements in a perfectly calibrated array is a Toeplitz matrix. Leveraging this fact, we first change the nonlinear problem to a linear problem considering certain rank-one positive semidefinite matrix, and then suggest a non-convex optimization approach to find the factor of the rank-one matrix under a unit norm constraint to avoid trivial solutions. Numerical experiments demonstrate that our proposed non-convex optimization approach provides better or competitive recovery performance than existing methods in the literature, without requiring any tuning parameters. 
    more » « less
  4. Parameter estimation from noisy and one-bit quantized data has become an important topic in signal processing, as it offers low cost and low complexity in the implementation. On the other hand, Direction-of-Arrival (DoA) estimation using Sparse Linear Arrays (SLAs) has recently gained considerable interest in array processing due to their attractive capability of providing enhanced degrees of freedom. In this paper, the problem of DoA estimation from one-bit measurements received by an SLA is considered and a novel framework for solving this problem is proposed. The proposed approach first provides an estimate of the received signal covariance matrix through minimization of a constrained weighted least-squares criterion. Then, MUSIC is applied to the spatially smoothed version of the estimated covariance matrix to find the DoAs of interest. Several numerical results are provided to demonstrate the superiority of the proposed approach over its counterpart already propounded in the literature. 
    more » « less
  5. Covariance matrix reconstruction has been the most widely used guiding objective in gridless direction-of-arrival (DoA) estimation for sparse linear arrays. Many semidefinite programming (SDP)-based methods fall under this category. Although deep learning-based approaches enable the construction of more sophisticated objective functions, most methods still rely on covariance matrix reconstruction. In this paper, we propose new loss functions that are invariant to the scaling of the matrices and provide a comparative study of losses with varying degrees of invariance. The proposed loss functions are formulated based on the scale-invariant signal-to-distortion ratio between the target matrix and the Gram matrix of the prediction. Numerical results show that a scale-invariant loss outperforms its non-invariant counterpart but is inferior to the recently proposed subspace loss that is invariant to the change of basis. These results provide evidence that designing loss functions with greater degrees of invariance is advantageous in deep learning-based gridless DoA estimation. 
    more » « less