skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sums of proper divisors follow the Erdős–Kac law
Let s ( n ) = ∑ d ∣ n ,   d > n d s(n)=\sum _{d\mid n,~d>n} d denote the sum of the proper divisors of n n . The second-named author proved that ω ( s ( n ) ) \omega (s(n)) has normal order log ⁡ log ⁡ n \log \log {n} , the analogue for s s -values of a classical result of Hardy and Ramanujan [ The normal number of prime factors of a number n [Quart. J. Math. 48 (1917), 76–92], AMS Chelsea Publ., Providence, RI, 2000, pp. 262–275]. We establish the corresponding Erdős–Kac theorem: ω ( s ( n ) ) \omega (s(n)) is asymptotically normally distributed with mean and variance log ⁡ log ⁡ n \log \log {n} . The same method applies with s ( n ) s(n) replaced by any of several other unconventional arithmetic functions, such as β ( n ) ≔ ∑ p ∣ n p \beta (n)≔\sum _{p\mid n} p , n − φ ( n ) n-\varphi (n) , and n + τ ( n ) n+\tau (n) ( τ \tau being the divisor function).  more » « less
Award ID(s):
2001581
PAR ID:
10417302
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
151
Issue:
765
ISSN:
0002-9939
Page Range / eLocation ID:
977 to 988
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Let Ω<#comment/> + ⊂<#comment/> R n + 1 \Omega ^+\subset \mathbb {R}^{n+1} be a bounded δ<#comment/> \delta -Reifenberg flat domain, with δ<#comment/> > 0 \delta >0 small enough, possibly with locally infinite surface measure. Assume also that Ω<#comment/> −<#comment/> = R n + 1 ∖<#comment/> Ω<#comment/> + ¯<#comment/> \Omega ^-= \mathbb {R}^{n+1}\setminus \overline {\Omega ^+} is an NTA (non-tangentially accessible) domain as well and denote by ω<#comment/> + \omega ^+ and ω<#comment/> −<#comment/> \omega ^- the respective harmonic measures of Ω<#comment/> + \Omega ^+ and Ω<#comment/> −<#comment/> \Omega ^- with poles p ±<#comment/> ∈<#comment/> Ω<#comment/> ±<#comment/> p^\pm \in \Omega ^\pm . In this paper we show that the condition that log ⁡<#comment/> d ω<#comment/> −<#comment/> d ω<#comment/> + ∈<#comment/> VMO ⁡<#comment/> ( ω<#comment/> + ) \log \dfrac {d\omega ^-}{d\omega ^+} \in \operatorname {VMO}(\omega ^+) is equivalent to Ω<#comment/> + \Omega ^+ being a chord-arc domain with inner unit normal belonging to VMO ⁡<#comment/> ( H n | ∂<#comment/> Ω<#comment/> + ) \operatorname {VMO}(\mathcal {H}^n|_{\partial \Omega ^+})
    more » « less
  2. An \ell _p oblivious subspace embedding is a distribution over r \times n matrices \Pi such that for any fixed n \times d matrix A , \[ \Pr _{\Pi }[\textrm {for all }x, \ \Vert Ax\Vert _p \le \Vert \Pi Ax\Vert _p \le \kappa \Vert Ax\Vert _p] \ge 9/10,\] where r is the dimension of the embedding, \kappa is the distortion of the embedding, and for an n -dimensional vector y , \Vert y\Vert _p = (\sum _{i=1}^n |y_i|^p)^{1/p} is the \ell _p -norm. Another important property is the sparsity of \Pi , that is, the maximum number of non-zero entries per column, as this determines the running time of computing \Pi A . While for p = 2 there are nearly optimal tradeoffs in terms of the dimension, distortion, and sparsity, for the important case of 1 \le p \lt 2 , much less was known. In this article, we obtain nearly optimal tradeoffs for \ell _1 oblivious subspace embeddings, as well as new tradeoffs for 1 \lt p \lt 2 . Our main results are as follows: (1) We show for every 1 \le p \lt 2 , any oblivious subspace embedding with dimension r has distortion \[ \kappa = \Omega \left(\frac{1}{\left(\frac{1}{d}\right)^{1 / p} \log ^{2 / p}r + \left(\frac{r}{n}\right)^{1 / p - 1 / 2}}\right).\] When r = {\operatorname{poly}}(d) \ll n in applications, this gives a \kappa = \Omega (d^{1/p}\log ^{-2/p} d) lower bound, and shows the oblivious subspace embedding of Sohler and Woodruff (STOC, 2011) for p = 1 is optimal up to {\operatorname{poly}}(\log (d)) factors. (2) We give sparse oblivious subspace embeddings for every 1 \le p \lt 2 . Importantly, for p = 1 , we achieve r = O(d \log d) , \kappa = O(d \log d) and s = O(\log d) non-zero entries per column. The best previous construction with s \le {\operatorname{poly}}(\log d) is due to Woodruff and Zhang (COLT, 2013), giving \kappa = \Omega (d^2 {\operatorname{poly}}(\log d)) or \kappa = \Omega (d^{3/2} \sqrt {\log n} \cdot {\operatorname{poly}}(\log d)) and r \ge d \cdot {\operatorname{poly}}(\log d) ; in contrast our r = O(d \log d) and \kappa = O(d \log d) are optimal up to {\operatorname{poly}}(\log (d)) factors even for dense matrices. We also give (1) \ell _p oblivious subspace embeddings with an expected 1+\varepsilon number of non-zero entries per column for arbitrarily small \varepsilon \gt 0 , and (2) the first oblivious subspace embeddings for 1 \le p \lt 2 with O(1) -distortion and dimension independent of n . Oblivious subspace embeddings are crucial for distributed and streaming environments, as well as entrywise \ell _p low-rank approximation. Our results give improved algorithms for these applications. 
    more » « less
  3. Given a set of points $$P = (P^+ \sqcup P^-) \subset \mathbb{R}^d$$ for some constant $$d$$ and a supply function $$\mu:P\to \mathbb{R}$$ such that $$\mu(p) > 0~\forall p \in P^+$$, $$\mu(p) < 0~\forall p \in P^-$$, and $$\sum_{p\in P}{\mu(p)} = 0$$, the geometric transportation problem asks one to find a transportation map $$\tau: P^+\times P^-\to \mathbb{R}_{\ge 0}$$ such that $$\sum_{q\in P^-}{\tau(p, q)} = \mu(p)~\forall p \in P^+$$, $$\sum_{p\in P^+}{\tau(p, q)} = -\mu(q) \forall q \in P^-$$, and the weighted sum of Euclidean distances for the pairs $$\sum_{(p,q)\in P^+\times P^-}\tau(p, q)\cdot ||q-p||_2$$ is minimized. We present the first deterministic algorithm that computes, in near-linear time, a transportation map whose cost is within a $$(1 + \varepsilon)$$ factor of optimal. More precisely, our algorithm runs in $$O(n\varepsilon^{-(d+2)}\log^5{n}\log{\log{n}})$$ time for any constant $$\varepsilon > 0$$. While a randomized $$n\varepsilon^{-O(d)}\log^{O(d)}{n}$$ time algorithm for this problem was discovered in the last few years, all previously known deterministic $$(1 + \varepsilon)$$-approximation algorithms run in~$$\Omega(n^{3/2})$$ time. A similar situation existed for geometric bipartite matching, the special case of geometric transportation where all supplies are unit, until a deterministic $$n\varepsilon^{-O(d)}\log^{O(d)}{n}$$ time $$(1 + \varepsilon)$$-approximation algorithm was presented at STOC 2022. Surprisingly, our result is not only a generalization of the bipartite matching one to arbitrary instances of geometric transportation, but it also reduces the running time for all previously known $$(1 + \varepsilon)$$-approximation algorithms, randomized or deterministic, even for geometric bipartite matching. In particular, we give the first $$(1 + \varepsilon)$$-approximate deterministic algorithm for geometric bipartite matching and the first $$(1 + \varepsilon)$$-approximate deterministic or randomized algorithm for geometric transportation with no dependence on $$d$$ in the exponent of the running time's polylog. As an additional application of our main ideas, we also give the first randomized near-linear $$O(\varepsilon^{-2} m \log^{O(1)} n)$$ time $$(1 + \varepsilon)$$-approximation algorithm for the uncapacitated minimum cost flow (transshipment) problem in undirected graphs with arbitrary \emph{real} edge costs. 
    more » « less
  4. A bstract We study the four-point function of the lowest-lying half-BPS operators in the $$ \mathcal{N} $$ N = 4 SU( N ) super-Yang-Mills theory and its relation to the flat-space four-graviton amplitude in type IIB superstring theory. We work in a large- N expansion in which the complexified Yang-Mills coupling τ is fixed. In this expansion, non-perturbative instanton contributions are present, and the SL(2 , ℤ) duality invariance of correlation functions is manifest. Our results are based on a detailed analysis of the sphere partition function of the mass-deformed SYM theory, which was previously computed using supersymmetric localization. This partition function determines a certain integrated correlator in the undeformed $$ \mathcal{N} $$ N = 4 SYM theory, which in turn constrains the four-point correlator at separated points. In a normalization where the two-point functions are proportional to N 2 − 1 and are independent of τ and $$ \overline{\tau} $$ τ ¯ , we find that the terms of order $$ \sqrt{N} $$ N and $$ 1/\sqrt{N} $$ 1 / N in the large N expansion of the four-point correlator are proportional to the non-holomorphic Eisenstein series $$ E\left(\frac{3}{2},\tau, \overline{\tau}\right) $$ E 3 2 τ τ ¯ and $$ E\left(\frac{5}{2},\tau, \overline{\tau}\right) $$ E 5 2 τ τ ¯ , respectively. In the flat space limit, these terms match the corresponding terms in the type IIB S-matrix arising from R 4 and D 4 R 4 contact inter-actions, which, for the R 4 case, represents a check of AdS/CFT at finite string coupling. Furthermore, we present striking evidence that these results generalize so that, at order $$ {N}^{\frac{1}{2}-m} $$ N 1 2 − m with integer m ≥ 0, the expansion of the integrated correlator we study is a linear sum of non-holomorphic Eisenstein series with half-integer index, which are manifestly SL(2 , ℤ) invariant. 
    more » « less
  5. Abstract We prove that, for an undirected graph with n vertices and m edges, each labeled with a linear function of a parameter $$\lambda $$ λ , the number of different minimum spanning trees obtained as the parameter varies can be $$\Omega (m\log n)$$ Ω ( m log n ) . 
    more » « less