skip to main content


Title: Machine learning and phone data can improve targeting of humanitarian aid
Abstract The COVID-19 pandemic has devastated many low- and middle-income countries, causing widespread food insecurity and a sharp decline in living standards 1 . In response to this crisis, governments and humanitarian organizations worldwide have distributed social assistance to more than 1.5 billion people 2 . Targeting is a central challenge in administering these programmes: it remains a difficult task to rapidly identify those with the greatest need given available data 3,4 . Here we show that data from mobile phone networks can improve the targeting of humanitarian assistance. Our approach uses traditional survey data to train machine-learning algorithms to recognize patterns of poverty in mobile phone data; the trained algorithms can then prioritize aid to the poorest mobile subscribers. We evaluate this approach by studying a flagship emergency cash transfer program in Togo, which used these algorithms to disburse millions of US dollars worth of COVID-19 relief aid. Our analysis compares outcomes—including exclusion errors, total social welfare and measures of fairness—under different targeting regimes. Relative to the geographic targeting options considered by the Government of Togo, the machine-learning approach reduces errors of exclusion by 4–21%. Relative to methods requiring a comprehensive social registry (a hypothetical exercise; no such registry exists in Togo), the machine-learning approach increases exclusion errors by 9–35%. These results highlight the potential for new data sources to complement traditional methods for targeting humanitarian assistance, particularly in crisis settings in which traditional data are missing or out of date.  more » « less
Award ID(s):
1942702
PAR ID:
10417644
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Nature
Volume:
603
Issue:
7903
ISSN:
0028-0836
Page Range / eLocation ID:
864 to 870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Hundreds of millions of poor families receive some form of targeted social assistance. Many of these antipoverty programs involve some degree of geographic targeting, where aid is prioritized to the poorest regions of the country. However, policy makers in many low-resource settings lack the disaggregated poverty data required to make effective geographic targeting decisions. Using several independent datasets from Nigeria, this paper shows that high-resolution poverty maps, constructed by applying machine learning algorithms to satellite imagery and other nontraditional geospatial data, can improve the targeting of government cash transfers to poor families. Specifically, we find that geographic targeting relying on machine learning–based poverty maps can reduce errors of exclusion and inclusion relative to geographic targeting based on recent nationally representative survey data. This result holds for antipoverty programs that target both the poor and the extreme poor and for initiatives of varying sizes. We also find no evidence that machine learning–based maps increase targeting disparities by demographic groups, such as gender or religion. Based in part on these findings, the Government of Nigeria used this approach to geographically target emergency cash transfers in response to the COVID-19 pandemic. 
    more » « less
  2. Many critical policy decisions, from strategic investments to the allocation of humanitarian aid, rely on data about the geographic distribution of wealth and poverty. Yet many poverty maps are out of date or exist only at very coarse levels of granularity. Here we develop microestimates of the relative wealth and poverty of the populated surface of all 135 low- and middle-income countries (LMICs) at 2.4 km resolution. The estimates are built by applying machine-learning algorithms to vast and heterogeneous data from satellites, mobile phone networks, and topographic maps, as well as aggregated and deidentified connectivity data from Facebook. We train and calibrate the estimates using nationally representative household survey data from 56 LMICs and then validate their accuracy using four independent sources of household survey data from 18 countries. We also provide confidence intervals for each microestimate to facilitate responsible downstream use. These estimates are provided free for public use in the hope that they enable targeted policy response to the COVID-19 pandemic, provide the foundation for insights into the causes and consequences of economic development and growth, and promote responsible policymaking in support of sustainable development. 
    more » « less
  3. null (Ed.)
    Recent papers demonstrate that non-traditional data, from mobile phones and other digital sensors, can be used to roughly estimate the wealth of individual subscribers. This paper asks a question more directly relevant to development policy: Can non-traditional data be used to more efficiently target development aid? By combining rich survey data from a "big push" anti-poverty program in Afghanistan with detailed mobile phone logs from program beneficiaries, we study the extent to which machine learning methods can accurately differentiate ultra-poor households eligible for program benefits from other households deemed ineligible. We show that supervised learning methods leveraging mobile phone data can identify ultra-poor households as accurately as standard survey-based measures of poverty, including consumption and wealth; and that combining survey-based measures with mobile phone data produces classifications more accurate than those based on a single data source. We discuss the implications and limitations of these methods for targeting extreme poverty in marginalized populations. 
    more » « less
  4. With the rapid expansion of mobile phone networks in developing countries, large-scale graph machine learning has gained sudden relevance in the study of global poverty. Recent applications range from humanitarian response and poverty estimation to urban planning and epidemic containment. Yet the vast majority of computational tools and algorithms used in these applications do not account for the multi-view nature of social networks: people are related in myriad ways, but most graph learning models treat relations as binary. In this paper, we develop a graph-based convolutional network for learning on multi-view networks. We show that this method outperforms state-of-the-art semi-supervised learning algorithms on three different prediction tasks using mobile phone datasets from three different developing countries. We also show that, while designed specifically for use in poverty research, the algorithm also outperforms existing benchmarks on a broader set of learning tasks on multi-view networks, including node labelling in citation networks. 
    more » « less
  5. The spread of fake news related to COVID-19 is an infodemic that leads to a public health crisis. Therefore, detecting fake news is crucial for an effective management of the COVID-19 pandemic response. Studies have shown that machine learning models can detect COVID-19 fake news based on the content of news articles. However, the use of biomedical information, which is often featured in COVID-19 news, has not been explored in the development of these models. We present a novel approach for predicting COVID-19 fake news by leveraging biomedical information extraction (BioIE) in combination with machine learning models. We analyzed 1164 COVID-19 news articles and used advanced BioIE algorithms to extract 158 novel features. These features were then used to train 15 machine learning classifiers to predict COVID-19 fake news. Among the 15 classifiers, the random forest model achieved the best performance with an area under the ROC curve (AUC) of 0.882, which is 12.36% to 31.05% higher compared to models trained on traditional features. Furthermore, incorporating BioIE-based features improved the performance of a state-of-the-art multi-modality model (AUC 0.914 vs. 0.887). Our study suggests that incorporating biomedical information into fake news detection models improves their performance, and thus could be a valuable tool in the fight against the COVID-19 infodemic.

     
    more » « less