Abstract Supercell storms are the most prolific producers of violent tornadoes, though only a fraction of supercells produce tornadoes. Past research into the differences between tornadic and nontornadic supercells have provided some insights but are of little utility to a real‐time warning decision process. Operational weather radars provide consistent observations in real time, but conventional radar techniques have not been able to effectively distinguish between tornadic and nontornadic supercells. After the national radar network upgrade to polarimetric capabilities in 2013, a polarimetric signature frequently observed in supercells is the separation of low‐level enhanced differential reflectivityZDRand specific differential phaseKDPregions. We analyzed this signature in tornadic and nontornadic supercell cases and found that, although the separation distances are similar, the separation orientations are statistically significantly different. Tornadic supercells have orientations more orthogonal to storm motion and nontornadic supercells have more parallel orientations. Possible reasons for these differences are discussed.
more »
« less
Investigating the relationship between polarimetric radar signatures of hydrometeor size sorting and tornadic potential in simulated supercells
Abstract The national upgrade of the operational weather radar network to include polarimetric capabilities has lead to numerous studies focusing on polarimetric radar signatures commonly observed in supercells. One such signature is the horizontal separation of regions of enhanced differential reflectivity ( Z DR ) and specific differential phase ( K DP ) values due to hydrometeor size sorting. Recent observational studies have shown that the orientation of this separation tends to be more perpendicular to storm motion in supercells that produce tornadoes. Although this finding has potential operational utility, the physical relationship between this observed radar signature and tornadic potential is not known. This study uses an ensemble of supercell simulations initialized with tornadic and nontornadic environments to investigate this connection. The tendency for tornadic supercells to have a more perpendicular separation orientation was reproduced, although to a lesser degree. This difference in orientation angles was caused by stronger rearward storm-relative flow in the nontornadic supercells, leading to a rearward shift of precipitation and, therefore, the enhanced K DP region within the supercell. Further, this resulted in an unfavorable rearward shift of the negative buoyancy region, which led to an order of magnitude less baroclinic generation of circulation in the nontornadic simulations compared to tornadic simulations.
more »
« less
- PAR ID:
- 10417770
- Date Published:
- Journal Name:
- Monthly Weather Review
- ISSN:
- 0027-0644
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Abstract The time preceding supercell tornadogenesis and tornadogenesis “failure” has been studied extensively to identify differing attributes related to tornado production or lack thereof. Studies from the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) found that air in the rear-flank downdraft (RFD) regions of non- and weakly tornadic supercells had different near-surface thermodynamic characteristics than that in strongly tornadic supercells. Subsequently, it was proposed that microphysical processes are likely to have an impact on the resulting thermodynamics of the near-surface RFD region. One way to view proxies to microphysical features, namely drop size distributions (DSDs), is through use of polarimetric radar data. Studies from the second VORTEX used data from dual-polarization radars to provide evidence of different DSDs in the hook echoes of tornadic and non-tornadic supercells. However, radar-based studies during these projects were limited to a small number of cases preventing result generalizations. This study compiles 68 tornadic and 62 non-tornadic supercells using Weather Surveillance Radar–1988 Doppler (WSR-88D) data to analyze changes in polarimetric radar variables leading up to, and at, tornadogenesis and tornadogenesis failure. Case types generally did not show notable hook echo differences in variables between sets, but did show spatial hook echo quadrant DSD differences. Consistent with past studies, differential radar reflectivity factor (Z DR ) generally decreased leading up to tornadogenesis and tornadogenesis failure; in both sets, estimated total number concentration increased during the same times. Relationships between DSDs and the near-storm environment, and implications of results for nowcasting tornadogenesis, also are discussed.more » « less
-
Abstract Polarimetric radar data from the WSR-88D network are used to examine the evolution of various polarimetric precursor signatures to tornado dissipation within a sample of 36 supercell storms. These signatures include an increase in bulk hook echo median raindrop size, a decrease in midlevel differential radar reflectivity factor (ZDR) column area, a decrease in the magnitude of theZDRarc, an increase in the area of low-level large hail, and a decrease in the orientation angle of the vector separating low-levelZDRand specific differential phase (KDP) maxima. Only supercells that produced “long-duration” tornadoes (with at least four consecutive volumes of WSR-88D data) are investigated, so that signatures can be sufficiently tracked in time, and novel algorithms are used to isolate each storm-scale process. During the time leading up to tornado dissipation, we find that hook echo median drop size (D0) and medianZDRremain relatively constant, but hook echo medianKDPand estimated number concentration (NT) increase. TheZDRarc maximum magnitude andZDR–KDPseparation orientation angles are observed to decrease in most dissipation cases. Neither the area of large hail nor theZDRcolumn area exhibit strong signals leading up to tornado dissipation. Finally, combinations of storm-scale behaviors and TVS behaviors occur most frequently just prior to tornado dissipation, but also are common 15–20 min prior to dissipation. The results from this study provide evidence that nowcasting tornado dissipation using dual-polarization radar may be possible when combined with TVS monitoring, subject to important caveats.more » « less
-
Abstract Forecasting tornadogenesis remains a difficult problem in meteorology, especially for short-lived, predominantly nonsupercellular tornadic storms embedded within mesoscale convective systems (MCSs). This study compares populations of tornadic nonsupercellular MCS storm cells with their nontornadic counterparts, focusing on nontornadic storms that have similar radar characteristics to tornadic storms. Comparisons of single-polarization radar variables during storm lifetimes show that median values of low-level, midlevel, and column-maximum azimuthal shear, as well as low-level radial divergence, enable the highest degree of separation between tornadic and nontornadic storms. Focusing on low-level azimuthal shear values, null storms were randomly selected such that the distribution of null low-level azimuthal shear values matched the distribution of tornadic values. After isolating the null cases from the nontornadic population, signatures emerge in single-polarization data that enable discrimination between nontornadic and tornadic storms. In comparison, dual-polarization variables show little deviation between storm types. Tornadic storms both at tornadogenesis and at a 20-min lead time show collocation of the primary storm updraft with enhanced near-surface rotation and convergence, facilitating the nonmesocyclonic tornadogenesis processes.more » « less
-
Abstract This case study analyzes the 17 May 2019 cyclic, tornadic supercell from southwest Nebraska observed by the Targeted Observation by Radars and UAS of Supercells (TORUS) field experiment. Specifically, 12 multi-Doppler wind syntheses are generated over a 96-min period from 2301 UTC 17 May to 0037 UTC 18 May using two P-3 airborne radars and the ground-based NOXP research radar. Synthesized winds and reflectivity are assimilated into a diabatic Lagrangian analysis for the retrieval of thermodynamic data. The 4D wind fields are found to correlate well with observed tornadic and nontornadic periods, and several storm-scale features related to low-level mesocyclone (LLM) and near-ground rotation processes are documented. This includes vortex line arches that are a defining feature during the first EF2 tornado, followed by an occlusion process and reorganization period. During the most active tornadic period, backward trajectories reveal both inflow parcels and forward-flank parcels participate in the core of the 0–1-km rotation. While tilting of streamwise vorticity into vertical vorticity and subsequent powerful vertical stretching occurs for both inflow and forward-flank parcels, the solenoidal generation of streamwise vorticity is dominant with the latter. This resembles streamwise vorticity currents found within numerical simulations. Last, an intense left-flank convergence boundary develops coincident with the intensification of storm-relative inflow winds, with its formation and dissipation correlated with the final tornado. The 96-min analysis period with 4D kinematic and thermodynamic data makes this study one of the most detailed supercell case studies presented in the literature. Significance StatementA detailed analysis of a supercell that produced nine tornadoes within a 96-min period is presented. The supercell was observed by five radars, which are used to obtain information about the 3D wind, temperature, and moisture fields. Although computer simulations can provide detailed looks into supercell processes, collecting and analyzing observed supercell data of this quality is challenging and rare. We identify features within the supercell that are correlated with periods of strong and weak tornado production. Additionally, we identify the source region of air that is associated with low-level rotation in the supercell and comment on the importance of temperature gradients observed within the supercell, comparing these results to what has been found in simulations.more » « less
An official website of the United States government

