skip to main content

This content will become publicly available on May 31, 2024

Title: Investigating the relationship between polarimetric radar signatures of hydrometeor size sorting and tornadic potential in simulated supercells
Abstract The national upgrade of the operational weather radar network to include polarimetric capabilities has lead to numerous studies focusing on polarimetric radar signatures commonly observed in supercells. One such signature is the horizontal separation of regions of enhanced differential reflectivity ( Z DR ) and specific differential phase ( K DP ) values due to hydrometeor size sorting. Recent observational studies have shown that the orientation of this separation tends to be more perpendicular to storm motion in supercells that produce tornadoes. Although this finding has potential operational utility, the physical relationship between this observed radar signature and tornadic potential is not known. This study uses an ensemble of supercell simulations initialized with tornadic and nontornadic environments to investigate this connection. The tendency for tornadic supercells to have a more perpendicular separation orientation was reproduced, although to a lesser degree. This difference in orientation angles was caused by stronger rearward storm-relative flow in the nontornadic supercells, leading to a rearward shift of precipitation and, therefore, the enhanced K DP region within the supercell. Further, this resulted in an unfavorable rearward shift of the negative buoyancy region, which led to an order of magnitude less baroclinic generation of circulation in the nontornadic simulations compared to tornadic simulations.  more » « less
Award ID(s):
1748715 2130936
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Weather Review
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Supercell storms are the most prolific producers of violent tornadoes, though only a fraction of supercells produce tornadoes. Past research into the differences between tornadic and nontornadic supercells have provided some insights but are of little utility to a real‐time warning decision process. Operational weather radars provide consistent observations in real time, but conventional radar techniques have not been able to effectively distinguish between tornadic and nontornadic supercells. After the national radar network upgrade to polarimetric capabilities in 2013, a polarimetric signature frequently observed in supercells is the separation of low‐level enhanced differential reflectivityZDRand specific differential phaseKDPregions. We analyzed this signature in tornadic and nontornadic supercell cases and found that, although the separation distances are similar, the separation orientations are statistically significantly different. Tornadic supercells have orientations more orthogonal to storm motion and nontornadic supercells have more parallel orientations. Possible reasons for these differences are discussed.

    more » « less
  2. Supercell thunderstorms produce a variety of hazards, including tornadoes. A supercell will often exist for some time prior to producing a tornado, while other supercells never become tornadic. In this study, a series of hypotheses is tested regarding the ability of S-band polarimetric radar fields to distinguish pretornadic from nontornadic supercell storms. Several quantified polarimetric radar metrics are examined that are related to storm inflow, updraft, and hailfall characteristics in samples of 19–30 pretornadic and 18–31 nontornadic supercells. The results indicate that pretornadic supercells are characterized by smaller hail extent and echo appendages with larger mean drop size. Additionally, differential reflectivity ZDRcolumn size is larger and less variable in the pretornadic storms in the 25–30 min prior to initial tornadogenesis. Many of the results indicate relatively small polarimetric differences that will likely be difficult to translate to operational use. Hail extent and ZDRcolumn size, however, may exhibit operationally useful differences between pretornadic and nontornadic supercells.

    more » « less
  3. Abstract

    Polarimetric radar data from the WSR-88D network are used to examine the evolution of various polarimetric precursor signatures to tornado dissipation within a sample of 36 supercell storms. These signatures include an increase in bulk hook echo median raindrop size, a decrease in midlevel differential radar reflectivity factor (ZDR) column area, a decrease in the magnitude of theZDRarc, an increase in the area of low-level large hail, and a decrease in the orientation angle of the vector separating low-levelZDRand specific differential phase (KDP) maxima. Only supercells that produced “long-duration” tornadoes (with at least four consecutive volumes of WSR-88D data) are investigated, so that signatures can be sufficiently tracked in time, and novel algorithms are used to isolate each storm-scale process. During the time leading up to tornado dissipation, we find that hook echo median drop size (D0) and medianZDRremain relatively constant, but hook echo medianKDPand estimated number concentration (NT) increase. TheZDRarc maximum magnitude andZDRKDPseparation orientation angles are observed to decrease in most dissipation cases. Neither the area of large hail nor theZDRcolumn area exhibit strong signals leading up to tornado dissipation. Finally, combinations of storm-scale behaviors and TVS behaviors occur most frequently just prior to tornado dissipation, but also are common 15–20 min prior to dissipation. The results from this study provide evidence that nowcasting tornado dissipation using dual-polarization radar may be possible when combined with TVS monitoring, subject to important caveats.

    more » « less
  4. null (Ed.)
    Abstract The time preceding supercell tornadogenesis and tornadogenesis “failure” has been studied extensively to identify differing attributes related to tornado production or lack thereof. Studies from the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) found that air in the rear-flank downdraft (RFD) regions of non- and weakly tornadic supercells had different near-surface thermodynamic characteristics than that in strongly tornadic supercells. Subsequently, it was proposed that microphysical processes are likely to have an impact on the resulting thermodynamics of the near-surface RFD region. One way to view proxies to microphysical features, namely drop size distributions (DSDs), is through use of polarimetric radar data. Studies from the second VORTEX used data from dual-polarization radars to provide evidence of different DSDs in the hook echoes of tornadic and non-tornadic supercells. However, radar-based studies during these projects were limited to a small number of cases preventing result generalizations. This study compiles 68 tornadic and 62 non-tornadic supercells using Weather Surveillance Radar–1988 Doppler (WSR-88D) data to analyze changes in polarimetric radar variables leading up to, and at, tornadogenesis and tornadogenesis failure. Case types generally did not show notable hook echo differences in variables between sets, but did show spatial hook echo quadrant DSD differences. Consistent with past studies, differential radar reflectivity factor (Z DR ) generally decreased leading up to tornadogenesis and tornadogenesis failure; in both sets, estimated total number concentration increased during the same times. Relationships between DSDs and the near-storm environment, and implications of results for nowcasting tornadogenesis, also are discussed. 
    more » « less
  5. null (Ed.)
    Abstract We demonstrate the utility of transient polarimetric signatures ( Z DR and K DP columns, a proxy for surges in a thunderstorm updraft) to explain variability in lightning flash rates in a tornadic supercell. Observational data from a WSR-88D and the Oklahoma lightning mapping array are used to map the temporal variance of polarimetric signatures and VHF sources from lightning channels. It is shown, via three-dimensional and cross-sectional analyses, that the storm was of inverted polarity resulting from anomalous electrification. Statistical analysis confirms that mean flash area in the Z DR column region was 10 times smaller than elsewhere in the storm. On an average, 5 times more flash initiations occurred within Z DR column regions, thereby supporting existing theory of an inverse relationship between flash initiation rates and lightning channel extent. Segmentation and object identification algorithms are applied to gridded radar data to calculate metrics such as height, width, and volume of Z DR and K DP columns. Variability in lightning flash rates is best explained by the fluctuations in Z DR column volume with a Spearman’s rank correlation coefficient value of 0.72. The highest flash rates occur in conjunction with the deepest Z DR columns (up to 5 km above environmental melting level) and largest volumes of Z DR columns extending up to the −20°C level (3 km above the melting level). Reduced flash rates toward the end of the analysis are indicative of weaker updrafts manifested as low Z DR column volumes at and above the −10°C level. These findings are consistent with recent studies linking lightning to the interplay between storm dynamics, kinematics, thermodynamics, and precipitation microphysics. 
    more » « less