skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Protease-activated indocyanine green nanoprobes for intraoperative NIR fluorescence imaging of primary tumors
Tumor-targeted fluorescent probes in the near-infrared spectrum can provide invaluable information about the location and extent of primary and metastatic tumors during intraoperative procedures to ensure no residual tumors are left in the patient's body. Even though the first fluorescence-guided surgery was performed more than 50 years ago, it is still not accepted as a standard of care in part due to the lack of efficient and non-toxic targeted probes approved by regulatory agencies around the world. Herein, we report protease-activated cationic gelatin nanoparticles encapsulating indocyanine green (ICG) for the detection of primary breast tumors in murine models with high tumor-to-background ratios. Upon intravenous administration, these nanoprobes remain optically silent due to the energy resonance transfer among the bound ICG molecules. As the nanoprobes extravasate and are exposed to the acidic tumor microenvironment, their positive surface charges increase, facilitating cellular uptake. The internalized nanoprobes are activated upon proteolytic degradation of gelatin to allow high contrast between the tumor and normal tissue. Since both gelatin and ICG are FDA-approved for intravenous administration, this activatable nanoprobe can lead to quick clinical adoption and improve the treatment of patients undergoing image-guided cancer surgery.  more » « less
Award ID(s):
2030421
PAR ID:
10417816
Author(s) / Creator(s):
; ; ; ; ; ; ;  ; ;
Date Published:
Journal Name:
Nanoscale Advances
Volume:
4
Issue:
19
ISSN:
2516-0230
Page Range / eLocation ID:
4041 to 4050
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cancer affects one in three people worldwide. Surgery remains the primary curative option for localized cancers, but good prognoses require complete removal of primary tumors and timely recognition of metastases. To expand surgical capabilities and enhance patient outcomes, we developed a six-channel color/near-infrared image sensor inspired by the mantis shrimp visual system that enabled near-infrared fluorescence image guidance during surgery. The mantis shrimp’s unique eye, which maximizes the number of photons contributing to and the amount of information contained in each glimpse of its surroundings, is recapitulated in our single-chip imaging system that integrates arrays of vertically stacked silicon photodetectors and pixelated spectral filters. To provide information about tumor location unavailable from a single instrument, we tuned three color channels to permit an intuitive perspective of the surgical procedure and three near-infrared channels to permit multifunctional imaging of optical probes highlighting cancerous tissue. In nude athymic mice bearing human prostate tumors, our image sensor enabled simultaneous detection of two tumor-targeted fluorophores, distinguishing diseased from healthy tissue in an estimated 92% of cases. It also permitted extraction of near-infrared structured illumination enabling the mapping of the three-dimensional topography of tumors and surgical sites to within 1.2-mm error. In the operating room, during surgical resection in 18 patients with breast cancer, our image sensor further enabled sentinel lymph node mapping using clinically approved near-infrared fluorophores. The flexibility and performance afforded by this simple and compact architecture highlights the benefits of biologically inspired sensors in image-guided surgery. 
    more » « less
  2. Cytoreductive surgery remains as the gold standard to treat ovarian cancer, but with limited efficacy since not all tumors can be intraoperatively visualized for resection. We have engineered erythrocyte-derived nano-constructs that encapsulate the near infrared (NIR) fluorophore, indocyanine green (ICG), as optical probes for NIR fluorescence imaging of ovarian tumors. Herein, we have enriched the membrane of these nano-constructs with cholesterol, and functionalized their surface with folic acid (FA) to target the folate receptor-α. Using a mouse model, we show that the average fraction of the injected dose per tumor mass for nano-constructs with both membrane cholesterol enrichment and FA functionalization was ~ sixfold higher than non-encapsulated ICG, ~ twofold higher than nano-constructs enriched with cholesterol alone, and 33 % higher than nano-constructs with only FA functionalization at 24-h post-injection. These results suggest that erythrocyte-derived nano-constructs containing both cholesterol and FA present a platform for improved fluorescence imaging of ovarian tumors. 
    more » « less
  3. Tracheobronchial tumors, while uncommon, are often malignant in adults. Surgical removal is the primary therapy for non-metastatic lung malignancies, but it is only possible in a small percentage of non-small-cell lung cancer patients and is limited by the number and location of tumors, as well as the patient’s overall health. This study proposes an alternative treatment: administering aerosolized chemotherapeutic particles via the pulmonary route using endotracheal catheters to target lung tumors. To improve delivery efficiency to the lesion, it is essential to understand local drug deposition and particle transport dynamics. This study uses an experimentally validated computational fluid particle dynamics (CFPD) model to simulate the transport and deposition of inhaled chemotherapeutic particles in a 3-dimensional tracheobronchial tree with 10 generations (G). Based on the particle release maps, targeted drug delivery strategies are proposed to enhance particle deposition at two lung tumor sites in G10. Results indicate that controlled drug release can improve particle delivery efficiencies at both targeted regions. The use of endotracheal catheters significantly affects particle delivery efficiencies in targeted tumors. The parametric analysis shows that using smaller catheters can deliver more than 74% of particles to targeted tumor sites, depending on the location of the tumor and the catheter diameter used, compared to less than 1% using conventional particle administration methods. Furthermore, the results indicate that particle release time has a significant impact on particle deposition under the same inhalation profile. This study serves as a first step in understanding the impact of catheter diameter on localized endotracheal injection for targeting tumors in small lung airways. 
    more » « less
  4. Abstract The first line of treatment for most solid tumors is surgical resection of the primary tumor with adequate negative margins. Incomplete tumor resections with positive margins account for over 75% of local recurrences and the development of distant metastases. In cases of oral cavity squamous cell carcinoma (OSCC), the rate of successful tumor removal with adequate margins is just 50–75%. Advanced real‐time imaging methods that improve the detection of tumor margins can help improve success rates,overall safety, and reduce the cost. Fluorescence imaging in the second near‐infrared (NIR‐II) window has the potential to revolutionize the field due to its high spatial resolution, low background signal, and deep tissue penetration properties, but NIR‐II dyes with adequate in vivo performance and safety profiles are scarce. A novel NIR‐II fluorophore, XW‐03‐66, with a fluorescence quantum yield (QY) of 6.0% in aqueous media is reported. XW‐03‐66 self‐assembles into nanoparticles (≈80 nm) and has a systemic circulation half‐life ( t 1/2 ) of 11.3 h. In mouse models of human papillomavirus (HPV)+ and HPV‐ OSCC, XW‐03‐66 outperformed indocyanine green (ICG), a clinically available NIR dye, and enabled intraoperative NIR‐II image‐guided resection of the tumor and adjacent draining lymph node with negative margins. In vitro and in vivo toxicity assessments revealed minimal safety concerns for in vivo applications. 
    more » « less
  5. A significant barrier to the application of nanoparticles for precision medicine is the mononuclear phagocyte system (MPS), a diverse population of phagocytic cells primarily located within the liver, spleen and lymph nodes. The majority of nanoparticles are indiscriminately cleared by the MPS via macropinocytosis before reaching their intended targets, resulting in side effects and decreased efficacy. Here, we demonstrate that the biodistribution and desired tissue accumulation of targeted nanoparticles can be significantly enhanced by co-injection with polymeric micelles containing the actin depolymerizing agent latrunculin A. These macropinocytosis inhibitory nanoparticles (MiNP) were found to selectively inhibit non-specific uptake of a second “effector” nanoparticle in vitro without impeding receptor-mediated endocytosis. In tumor bearing mice, co-injection with MiNP in a single multi-nanoparticle formulation significantly increased the accumulation of folate-receptor targeted nanoparticles within tumors. Furthermore, subcutaneous co-administration with MiNP allowed effector nanoparticles to achieve serum levels that rivaled a standard intravenous injection. This effect was only observed if the effector nanoparticles were injected within 24 h following MiNP administration, indicating a temporary avoidance of MPS cells. Co-injection with MiNP therefore allows reversible evasion of the MPS for targeted nanoparticles and presents a previously unexplored method of modulating and improving nanoparticle biodistribution following subcutaneous administration. 
    more » « less