skip to main content


Title: Jones diameter and crossing numbers of knots
It has long been known that the quadratic term in the degree of the colored Jones polynomial of a knot is bounded above in terms of the crossing number of the knot. We show that this bound is sharp if and only if the knot is adequate. As an application of our result we determine the crossing numbers of broad families of non-adequate prime satellite knots. More specifically, we exhibit minimal crossing number diagrams for untwisted Whitehead doubles of zero-writhe adequate knots. This allows us to determine the crossing number of untwisted Whitehead doubles of any amphicheiral adequate knot, including, for instance, the Whitehead doubles of the connected sum of any alternating knot with its mirror image. We also determine the crossing number of the connected sum of any adequate knot with an untwisted Whitehead double of a zero-writhe adequate knot.  more » « less
Award ID(s):
2004155
NSF-PAR ID:
10417820
Author(s) / Creator(s):
Date Published:
Journal Name:
Advances in Mathematics
Volume:
417
ISSN:
1857-8438
Page Range / eLocation ID:
108937
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Manolescu and Piccirillo (2023) recently initiated a program to construct an exotic or by using zero surgery homeomorphisms and Rasmussen's ‐invariant. They find five knots that if any were slice, one could construct an exotic and disprove the Smooth 4‐dimensional Poincaré conjecture. We rule out this exciting possibility and show that these knots are not slice. To do this, we use a zero surgery homeomorphism to relate slice properties of two knotsstablyafter a connected sum with some 4‐manifold. Furthermore, we show that our techniques will extend to the entire infinite family of zero surgery homeomorphisms constructed by Manolescu and Piccirillo. However, our methods do not completely rule out the possibility of constructing an exotic or as Manolescu and Piccirillo proposed. We explain the limits of these methods hoping this will inform and invite new attempts to construct an exotic or . We also show that a family of homotopy spheres constructed by Manolescu and Piccirillo using annulus twists of a ribbon knot are all standard.

     
    more » « less
  2. The representation of knots by petal diagrams (Adams et al 2012) naturally defines a sequence of distributions on the set of knots. We establish some basic properties of this randomized knot model. We prove that in the random n–petal model the probability of obtaining every specific knot type decays to zero as n, the number of petals, grows. In addition we improve the bounds relating the crossing number and the petal number of a knot. This implies that the n–petal model represents at least exponentially many distinct knots. Past approaches to showing, in some random models, that individual knot types occur with vanishing probability rely on the prevalence of localized connect summands as the complexity of the knot increases. However, this phenomenon is not clear in other models, including petal diagrams, random grid diagrams and uniform random polygons. Thus we provide a new approach to investigate this question. 
    more » « less
  3. We obtain a formula for the Turaev-Viro invariants of a link complement in terms of values of the colored Jones polynomial of the link. As an application we give the first examples for which the volume conjecture of Chen and the third named author\,\cite{Chen-Yang} is verified. Namely, we show that the asymptotics of the Turaev-Viro invariants of the Figure-eight knot and the Borromean rings complement determine the corresponding hyperbolic volumes. Our calculations also exhibit new phenomena of asymptotic behavior of values of the colored Jones polynomials that seem not to be predicted by neither the Kashaev-Murakami-Murakami volume conjecture and various of its generalizations nor by Zagier's quantum modularity conjecture. We conjecture that the asymptotics of the Turaev-Viro invariants of any link complement determine the simplicial volume of the link, and verify it for all knots with zero simplicial volume. Finally we observe that our simplicial volume conjecture is stable under connect sum and split unions of links. 
    more » « less
  4. Proper identification of oriented knots and 2-component links requires a precise link nomenclature. Motivated by questions arising in DNA topology, this study aims to produce a nomenclature unambiguous with respect to link symmetries. For knots, this involves distinguishing a knot type from its mirror image. In the case of 2-component links, there are up to sixteen possible symmetry types for each link type. The study revisits the methods previously used to disambiguate chiral knots and extends them to oriented 2-component links with up to nine crossings. Monte Carlo simulations are used to report on writhe, a geometric indicator of chirality. There are ninety-two prime 2-component links with up to nine crossings. Guided by geometrical data, linking number, and the symmetry groups of 2-component links, canonical link diagrams for all but five link types (9 5 2, 9 34 2, 9 35 2, 9 39 2, and 9 41 2) are proposed. We include complete tables for prime knots with up to ten crossings and prime links with up to nine crossings. We also prove a result on the behavior of the writhe under local lattice moves. 
    more » « less
  5. If a knot K in S^3 admits a pair of truly cosmetic surgeries, we show that the surgery slopes are either ±2 or ±1/q for some value of q that is explicitly determined by the knot Floer homology of K. Moreover, in the former case the genus of K must be 2, and in the latter case there is a bound relating q to the genus and the Heegaard Floer thickness of K. As a consequence, we show that the cosmetic crossing conjecture holds for alternating knots (or more generally, Heegaard Floer thin knots) with genus not equal to 2. We also show that the conjecture holds for any knot K for which each prime summand of K has at most 16 crossings; our techniques rule out cosmetic surgeries in this setting except for slopes ±1 and ±2 on a small number of knots, and these remaining examples can be checked by comparing hyperbolic invariants. These results make use of the surgery formula for Heegaard Floer homology, which has already proved to be a powerful tool for obstructing cosmetic surgeries; we get stronger obstructions than previously known by considering the full graded theory. We make use of a new graphical interpretation of knot Floer homology and the surgery formula in terms of immersed curves, which makes the grading information we need easier to access. 
    more » « less