skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Parametrized Motion Planning and Topological Complexity
In this paper we study paramertized motion planning algorithms which provide universal and flexible solutions to diverse motion planning problems. Such algorithms are intended to function under a variety of external conditions which are viewed as parameters and serve as part of the input of the algorithm. Continuing the recent paper [2], we study further the concept of parametrized topological complexity. We analyse in full detail the problem of controlling a swarm of robots in the presence of multiple obstacles in Euclidean space which served for us a natural motivating example. We present an explicit parametrized motion planning algorithm solving the motion planning problem for any number of robots and obstacles in Rd. This algorithm is optimal, it has minimal possible topological complexity for any d ≥ 3 odd. Besides, we describe a modification of this algorithm which is optimal for d ≥ 2 even. We also analyse the parametrized topological complexity of sphere bundles using the Stiefel - Whitney characteristic classes.  more » « less
Award ID(s):
2105553
PAR ID:
10417903
Author(s) / Creator(s):
;
Editor(s):
LaValle, S.; O'Kane, J.; Otte, M.; Sadigh, D.; Tokekar, P.
Date Published:
Journal Name:
Algorithmic Foundations of Robotics XV
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Parametrized motion planning algorithms \cite{CFW} have high degree of flexibility and universality, they can work under a variety of external conditions, which are viewed as parameters and form part of the input of the algorithm. In this paper we analyse the parameterized motion planning problem in the case of sphere bundles.Our main results provide upper and lower bounds for the parametrized topological complexity; the upper bounds typically involve sectional categories of the associated fibrations and the lower bounds are given in terms of characteristic classes and their properties. We explicitly compute the parametrized topological complexity in many examples and show that it may assume arbitrarily large values. 
    more » « less
  2. Many robotics applications benefit from being able to compute multiple geodesic paths in a given configuration space. Existing paradigm is to use topological path planning, which can compute optimal paths in distinct topological classes. However, these methods usually require nontrivial geometric constructions, which are prohibitively expensive in 3-D, and are unable to distinguish between distinct topologically equivalent geodesics that are created due to high-cost/curvature regions or prismatic obstacles in 3-D. In this article, we propose an approach to compute k geodesic paths using the concept of a novel neighborhood-augmented graph, on which graph search algorithms can compute multiple optimal paths that are topo-geometrically distinct. Our approach does not require complex geometric constructions, and the resulting paths are not restricted to distinct topological classes, making the algorithm suitable for problems where finding and distinguishing between geodesic paths are of interest. We demonstrate the application of our algorithm to planning shortest traversible paths for a tethered robot in 3-D with cable-length constraint. 
    more » « less
  3. null (Ed.)
    The main objective of an unmanned aerial vehicle (UAV) path planning is to generate a flight path that links a start point to an endpoint in an indoor space avoiding obstacles.  Path planning is essential for many real-life applications such as an autonomous car, surveillance mission, farming robots, unmanned aerial vehicles package delivery, space exploration, and many others. To create an optimal path, we need to adopt a specific criterion to minimize the distance the UAV must travel such as the Euclidean distance. In this paper, we provide our initial idea of creating an optimal path for indoor UAV using both A* and the Late Acceptance Hill Climbing (LAHC) algorithms. We are adopting an indoor search environment with various complexity and utilize the Probabilistic Roadmap algorithm (PRM) as a search space for both algorithms. The basic idea following PRM is to generate random sample points in the space and search these points for an optimal path. The developed results show that the LAHC algorithm outperforms the A* algorithm. 
    more » « less
  4. null (Ed.)
    Abstract A novel, exact algorithm is presented to solve the path planning problem that involves finding the shortest collision-free path from a start to a goal point in a two-dimensional environment containing convex and non-convex obstacles. The proposed algorithm, which is called the shortest possible path (SPP) algorithm, constructs a network of lines connecting the vertices of the obstacles and the locations of the start and goal points which is smaller than the network generated by the visibility graph. Then it finds the shortest path from start to goal point within this network. The SPP algorithm generates a safe, smooth and obstacle-free path that has a desired distance from each obstacle. This algorithm is designed for environments that are populated sparsely with convex and nonconvex polygonal obstacles. It has the capability of eliminating some of the polygons that do not play any role in constructing the optimal path. It is proven that the SPP algorithm can find the optimal path in O(nn r2 ) time, where n is the number of vertices of all polygons and n ̓ is the number of vertices that are considered in constructing the path network (n ̓ ≤ n). The performance of the algorithm is evaluated relative to three major classes of algorithms: heuristic, probabilistic, and classic. Different benchmark scenarios are used to evaluate the performance of the algorithm relative to the first two classes of algorithms: GAMOPP (genetic algorithm for multi-objective path planning), a representative heuristic algorithm, as well as RRT (rapidly-exploring random tree) and PRM (probabilistic road map), two well-known probabilistic algorithms. Time complexity is known for classic algorithms, so the presented algorithm is compared analytically. 
    more » « less
  5. This paper reports a novel result: with proper robot models based on geometric mechanics, one can formulate the kinodynamic motion planning problems for rigid body systems as exact polynomial optimization problems. Due to the nonlinear rigid body dynamics, the motion planning problem for rigid body systems is nonconvex. Existing global optimization-based methods do not parameterize 3D rigid body motion efficiently; thus, they do not scale well to long-horizon planning problems. We use Lie groups as the configuration space and apply the variational integrator to formulate the forced rigid body dynamics as quadratic polynomials. Then, we leverage Lasserre’s hierarchy of moment relaxation to obtain the globally optimal solution via semidefinite programming. By leveraging the sparsity of the motion planning problem, the proposed algorithm has linear complexity with respect to the planning horizon. This paper demonstrates that the proposed method can provide globally optimal solutions or certificates of infeasibility at the second-order relaxation for 3D drone landing using full dynamics and inverse kinematics for serial manipulators. Moreover, we extend the algorithms to multi-body systems via the constrained variational integrators. The testing cases on cart-pole and drone with cable-suspended load suggest that the proposed algorithms can provide rank-one optimal solutions or nontrivial initial guesses. Finally, we propose strategies to speed up the computation, including an alternative formulation using quaternion, which provides empirically tight relaxations for the drone landing problem at the first-order relaxation. 
    more » « less