skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on November 6, 2025

Title: Topo-Geometrically Distinct Path Computation Using Neighborhood-Augmented Graph, and Its Application to Path Planning for a Tethered Robot in 3-D
Many robotics applications benefit from being able to compute multiple geodesic paths in a given configuration space. Existing paradigm is to use topological path planning, which can compute optimal paths in distinct topological classes. However, these methods usually require nontrivial geometric constructions, which are prohibitively expensive in 3-D, and are unable to distinguish between distinct topologically equivalent geodesics that are created due to high-cost/curvature regions or prismatic obstacles in 3-D. In this article, we propose an approach to compute k geodesic paths using the concept of a novel neighborhood-augmented graph, on which graph search algorithms can compute multiple optimal paths that are topo-geometrically distinct. Our approach does not require complex geometric constructions, and the resulting paths are not restricted to distinct topological classes, making the algorithm suitable for problems where finding and distinguishing between geodesic paths are of interest. We demonstrate the application of our algorithm to planning shortest traversible paths for a tethered robot in 3-D with cable-length constraint.  more » « less
Award ID(s):
2144246
PAR ID:
10594529
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE transactions on robotics
Volume:
41
ISSN:
1552-3098
Page Range / eLocation ID:
20-41
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. LaValle, S.; O'Kane, J.; Otte, M.; Sadigh, D.; Tokekar, P. (Ed.)
    In this paper we study paramertized motion planning algorithms which provide universal and flexible solutions to diverse motion planning problems. Such algorithms are intended to function under a variety of external conditions which are viewed as parameters and serve as part of the input of the algorithm. Continuing the recent paper [2], we study further the concept of parametrized topological complexity. We analyse in full detail the problem of controlling a swarm of robots in the presence of multiple obstacles in Euclidean space which served for us a natural motivating example. We present an explicit parametrized motion planning algorithm solving the motion planning problem for any number of robots and obstacles in Rd. This algorithm is optimal, it has minimal possible topological complexity for any d ≥ 3 odd. Besides, we describe a modification of this algorithm which is optimal for d ≥ 2 even. We also analyse the parametrized topological complexity of sphere bundles using the Stiefel - Whitney characteristic classes. 
    more » « less
  2. In this work, we present a novel method for constructing a topological map of biological hotspots in an aquatic environment using a Fast Marching-based Voronoi segmentation. Using this topological map, we develop a closed form solution to the scheduling problem for any single path through the graph. Searching over the space of all paths allows us to compute a maximally informative path that traverses a subset of the hotspots, given some budget. Using a greedy-coverage algorithm we can then compute an informative path. We evaluate our method in a set of simulated trials, both with randomly generated environments and a real-world environment. In these trials, we show that our method produces a topological graph which more accurately captures features in the environment than standard thresholding techniques. Additionally, We show that our method can improve the performance of a greedy-coverage algorithm in the informative path planning problem by guiding it to different informative areas to help it escape from local maxima. 
    more » « less
  3. N/A (Ed.)
    Abstract—The Resource Constrained Shortest Path Problem (RCSPP) seeks to determine a minimum-cost path between a start and a goal location while ensuring that one or multiple types of resource consumed along the path do not exceed their limits. This problem is often solved on a graph where a path is incrementally built from the start towards the goal during the search. RCSPP is computationally challenging as comparing these partial solution paths is based on multiple criteria (i.e., the accumulated cost and resource along the path), and in general, there does not exist a single path that optimizes all criteria simultaneously. Consequently, the search needs to maintain and explore a large number of partial paths in order to find an optimal solution. While a variety of algorithms have been developed to solve RCSPP, they either have little consideration about efficiently comparing and maintaining the partial paths, which reduces their overall runtime efficiency, or are restricted to handle only one resource constraint as opposed to multiple resource constraints. This paper develops Enhanced Resource Constrained A* (ERCA*), a fast A*-based algorithm that can find an optimal solution while satisfying multiple resource constraints. ERCA* leverages both the recent advances in multi-objective path planning to efficiently compare and maintain partial paths, and techniques from the existing RCSPP literature. Furthermore, ERCA* has a functional parameter to broker a trade-off between solution quality and runtime efficiency. The results show ERCA* often runs several orders of magnitude faster than an existing leading algorithm for RCSPP. 
    more » « less
  4. Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executable 
    more » « less
  5. Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collision-free paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e., target sequencing). To solve the problem, we leverage Conflict-Based Search (CBS) for MAPF and propose a novel approach called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the collision resolution strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. We also develop two variants of CBSS that trade off runtime against solution optimality. Our test results verify the advantage of CBSS over the baselines in terms of computing cheaper paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. Finally, we run both Gazebo simulation and physical robot tests to validate that the planned paths are executable. 
    more » « less