- Award ID(s):
- 1942321
- NSF-PAR ID:
- 10417959
- Date Published:
- Journal Name:
- Journal of Artificial Intelligence Research
- Volume:
- 74
- ISSN:
- 1076-9757
- Page Range / eLocation ID:
- 111 to 142
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
We study the problem of approximating maximum Nash social welfare (NSW) when allocating m indivisible items among n asymmetric agents with submodular valuations. The NSW is a well-established notion of fairness and efficiency, defined as the weighted geometric mean of agents' valuations. For special cases of the problem with symmetric agents and additive(-like) valuation functions, approximation algorithms have been designed using approaches customized for these specific settings, and they fail to extend to more general settings. Hence, no approximation algorithm with factor independent of m is known either for asymmetric agents with additive valuations or for symmetric agents beyond additive(-like) valuations. In this paper, we extend our understanding of the NSW problem to far more general settings. Our main contribution is two approximation algorithms for asymmetric agents with additive and submodular valuations respectively. Both algorithms are simple to understand and involve non-trivial modifications of a greedy repeated matchings approach. Allocations of high valued items are done separately by un-matching certain items and re-matching them, by processes that are different in both algorithms. We show that these approaches achieve approximation factors of O(n) and O(n log n) for additive and submodular case respectively, which is independent of the number of items. For additive valuations, our algorithm outputs an allocation that also achieves the fairness property of envy-free up to one item (EF1). Furthermore, we show that the NSW problem under submodular valuations is strictly harder than all currently known settings with an e/(e-1) factor of the hardness of approximation, even for constantly many agents. For this case, we provide a different approximation algorithm that achieves a factor of e/(e-1), hence resolving it completely.more » « less
-
We study the problem of approximating maximum Nash social welfare (NSW) when allocating
m indivisible items amongn asymmetric agents with submodular valuations. TheNSW is a well-established notion of fairness and efficiency, defined as the weighted geometric mean of agents’ valuations. For special cases of the problem with symmetric agents and additive(-like) valuation functions, approximation algorithms have been designed using approaches customized for these specific settings, and they fail to extend to more general settings. Hence, no approximation algorithm with a factor independent ofm was known either for asymmetric agents with additive valuations or for symmetric agents beyond additive(-like) valuations before this work.In this article, we extend our understanding of the
NSW problem to far more general settings. Our main contribution is two approximation algorithms for asymmetric agents with additive and submodular valuations. Both algorithms are simple to understand and involve non-trivial modifications of a greedy repeated matchings approach. Allocations of high-valued items are done separately by un-matching certain items and re-matching them by different processes in both algorithms. We show that these approaches achieve approximation factors ofO (n ) andO (n logn ) for additive and submodular cases, independent of the number of items. For additive valuations, our algorithm outputs an allocation that also achieves the fairness property of envy-free up to one item (EF1 ).Furthermore, we show that the
NSW problem under submodular valuations is strictly harder than all currently known settings with an factor of the hardness of approximation, even for constantly many agents. For this case, we provide a different approximation algorithm that achieves a factor of\(\frac{\mathrm{e}}{\mathrm{e}-1}\) , hence resolving it completely.\(\frac{\mathrm{e}}{\mathrm{e}-1}\) -
We study fair allocation of indivisible goods and chores among agents with lexicographic preferences---a subclass of additive valuations. In sharp contrast to the goods-only setting, we show that an allocation satisfying envy-freeness up to any item (EFX) could fail to exist for a mixture of objective goods and chores. To our knowledge, this negative result provides the first counterexample for EFX over (any subdomain of) additive valuations. To complement this non-existence result, we identify a class of instances with (possibly subjective) mixed items where an EFX and Pareto optimal allocation always exists and can be efficiently computed. When the fairness requirement is relaxed to maximin share (MMS), we show positive existence and computation for any mixed instance. More broadly, our work examines the existence and computation of fair and efficient allocations both for mixed items as well as chores-only instances, and highlights the additional difficulty of these problems vis-à-vis their goods-only counterparts.more » « less
-
Mohar, Bojan ; Shinkar, Igor ; O'Donnell, Ryan (Ed.)We present a constant-factor approximation algorithm for the Nash Social Welfare (NSW) maximization problem with subadditive valuations accessible via demand queries. More generally, we propose a framework for NSW optimization which assumes two subroutines that (1) solve a conguration-type LP under certain additional conditions, and (2) round the fractional solution with respect to utilitarian social welfare. In particular, a constant-factor approximation for submodular valuations with value queries can also be derived from our framework.more » « less
-
Mohar, Bojan ; Shinkar, Igor ; O'Donnell, Ryan (Ed.)We present a constant-factor approximation algorithm for the Nash Social Welfare (NSW) maximization problem with subadditive valuations accessible via demand queries. More generally, we propose a framework for NSW optimization which assumes two subroutines which (1) solve a configuration-type LP under certain additional conditions, and (2) round the fractional solution with respect to utilitarian social welfare. In particular, a constant-factor approximation for submodular valuations with value queries can also be derived from our framework.more » « less