skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanisms of microstructural deformation governing Vickers hardness in phase‐separated calcium aluminosilicate glasses
Abstract The impact of microstructure on hardness in phase‐separated calcium aluminosilicate glasses is investigated. Changes in hardness are governed by microstructure deformations that occur during indentation. Phase separation leads to decreased hardness due to the incongruent yielding of the droplet and matrix phases. Moreover, the deformation of microstructures possessing dilute, spherical droplets did not have a significant impact on hardness. Microstructures characterized by concentrated, acicular droplets were found to deform through a process of droplet coalescence. This process absorbs additional energy during yielding and results in glasses that deform through droplet coalescence possessing improved hardness.  more » « less
Award ID(s):
1762275
PAR ID:
10418064
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of the American Ceramic Society
Volume:
106
Issue:
8
ISSN:
0002-7820
Page Range / eLocation ID:
p. 4605-4616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Glasses with nanoscale phase separation have the potential to possess improved hardness and fracture toughness while maintaining their optical transparency. Here we present the results of isothermal heat treatments of phase‐separated calcium aluminosilicate glasses. Our results indicate that a transition from Lifshitz–Slozof–Wagner (LSW)‐type kinetics to a diffusion‐controlled pseudo‐coalescence mechanism occurs at ~17% droplet volume fraction, which results in the droplets becoming increasingly elongated and interconnected. The activation barrier for both mechanisms suggests that calcium diffusion is the underlying means for the coarsening of the silica‐rich domains. Simple approximations show the transition cannot be explained by Brownian motion or Van der Waals attraction between domains, and instead suggest various osmotic forces may be responsible. 
    more » « less
  2. Abstract In order to improve the quality of products during additive manufacturing, we developed a novel freezing sublimation-based method for inkjet-based three-dimensional (3D) printing technology, which can significantly improve the uniformity of material distribution in printed products. In our previous studies, we used a laboratory prototype with single droplets of inkjet solution containing colloidal particles to prove the concept of this study. However, understanding the interaction between droplets on the printing substrate surface is also crucial for determining the printing resolution and accuracy of this method, which cannot be fully investigated through single droplet-based experimental studies. To fill this knowledge gap, we conducted a series of experiments on colloidal droplet impingement, freezing, and sublimation on substrates using dual droplets. The experimental setup allowed the release of two droplets in quick succession from a modified nozzle with two needles. These droplets coalesced on the substrate surface due to spreading during their impingement processes. Observations revealed that the coalescence pattern of these two droplets varied depending on the time interval between their release. When the second droplet was released immediately after the first, their coalescence was governed by fluid dynamics. However, when the second droplet was released after the first droplet had frozen on the substrate, it spread above the ice surface of the first droplet in a relatively slower process. This observation provides new insights for the continued study and optimization of the proposed novel freezing sublimation-based 3D printing method. 
    more » « less
  3. Dropwise condensation yields higher heat transfer coefficients by avoiding the thermal resistance of the condensate film, seen during filmwise condensation. This work explores further enhancement of dropwise condensation heat transfer through the use of electrowetting to achieve faster droplet growth via coalescence of the condensed droplets. Electrowetting is a well understood microfluidic technique to actuate and control droplets. This work shows that AC electric fields can significantly enhance droplet growth dynamics. This enhancement is a result of coalescence triggered by various types of droplet motion (translation of droplets, oscillations of three phase line), which in turn depends on the frequency of the applied AC waveform. The applied electric field modifies droplet condensation patterns as well as the roll-off dynamics on the surface. Experiments are conducted to study early-stage droplet growth dynamics, as well as steady state condensation rates under the influence of electric fields. It is noted that this study deals with condensation of humid air, and not pure steam. Results show that increasing the voltage magnitude and frequency increases droplet growth rate and overall condensation rate. Overall, this study reports more than a 30 % enhancement in condensation rate resulting from the applied electric field, which highlights the potential of this concept for condensation heat transfer enhancement. 
    more » « less
  4. Abstract Soft, elastically deformable composites with liquid metal (LM) droplets can enable new generations of soft electronics, robotics, and reconfigurable structures. However, techniques to control local composite microstructure, which ultimately governs material properties and performance, is lacking. Here a direct ink writing technique is developed to program the LM microstructure (i.e., shape, orientation, and connectivity) on demand throughout elastomer composites. In contrast to inks with rigid particles that have fixed shape and size, it is shown that emulsion inks with LM fillers enable in situ control of microstructure. This enables filaments, films, and 3D structures with unique LM microstructures that are generated on demand and locked in during printing. This includes smooth and discrete transitions from spherical to needle‐like droplets, curvilinear microstructures, geometrically complex embedded inclusion patterns, and connected LM networks. The printed materials are soft (modulus < 200 kPa), highly deformable (>600 % strain), and can be made locally insulating or electrically conductive using a single ink by controlling the process conditions. These capabilities are demonstrated by embedding elongated LM droplets in a soft heat sink, which rapidly dissipates heat from high‐power LEDs. These programmable microstructures can enable new composite paradigms for emerging technologies that demand mechanical compliance with multifunctional response. 
    more » « less
  5. Droplet impacts on solid surfaces produce a wide variety of phenomena such as spreading, splashing, jetting, receding, and rebounding. In microholed surfaces, downward jets through the hole can be caused by the high impact inertia during the spreading phase of the droplet over the substrate as well as the cavity collapse during recoil phase of the droplet. We investigate the dynamics of the jet formed through the single hole during the impacting phase of the droplet on a micro-holed hydrophilic substrate. The sub-millimeter circular holes are created on the 0.2 mm-thickness hydrophilic plastic films using a 0.5 mm punch. Great care has been taken to ensure that the millimeter-sized droplets of water dispensed by a syringe pump through a micropipette tip can impact directly over the micro-holes. A high-speed video photography camera is employed to capture the full event of impacting and jetting. A MATLAB code has been developed to process the captured videos for data analysis. We study the effect of impact velocity on the jet formation including jet velocity, ejected droplet volume, and breakup process. We find that the Weber number significantly affects outcomes of the drop impact and jetting mechanism. We also examine the dynamic contact angle of the contact line during the spreading and the receding phase. 
    more » « less