This paper describes a group-level analysis of 14 subjects with prefrontal cortex (pFC) lesions and 20 healthy controls performing multiple lateralized visuospatial working memory (WM) trials. Using effective brain connectivity measures inferred from directed information (DI) during memory encoding, we first show that DI features can correctly classify 18 control subjects and 11 subjects with pFC lesions, providing an overall accuracy of 85.3%. Second, we show that differential DI, the change in DI during the encoding phase from pretrial, can successfully overcome inter-subject variability and correctly identify the class of all 34 subjects (100% accuracy). These accuracy results are based on two-thirds majority thresholding among all trials. Finally, we use Welch’s t-test to identify the crucial differences in the two classes’ sub-networks responsible for memory encoding. While the inflow of information to the prefrontal region is significant among subjects with pFC lesions, the outflow from the prefrontal to the frontal and central regions is diminished compared to the control subjects. We further identify specific neural pathways that are exclusively activated for each group during the encoding phase.
more »
« less
Detecting Smartwatch-Based Behavior Change in Response to a Multi-Domain Brain Health Intervention
In this study, we introduce and validate a computational method to detect lifestyle change that occurs in response to a multi-domain healthy brain aging intervention. To detect behavior change, digital behavior markers are extracted from smartwatch sensor data and a permutation-based change detection algorithm quantifies the change in marker-based behavior from a pre-intervention, 1-week baseline. To validate the method, we verify that changes are successfully detected from synthetic data with known pattern differences. Next, we employ this method to detect overall behavior change for n = 28 brain health intervention subjects and n = 17 age-matched control subjects. For these individuals, we observe a monotonic increase in behavior change from the baseline week with a slope of 0.7460 for the intervention group and a slope of 0.0230 for the control group. Finally, we utilize a random forest algorithm to perform leave-one-subject-out prediction of intervention versus control subjects based on digital marker delta values. The random forest predicts whether the subject is in the intervention or control group with an accuracy of 0.87. This work has implications for capturing objective, continuous data to inform our understanding of intervention adoption and impact.
more »
« less
- Award ID(s):
- 1954372
- PAR ID:
- 10418199
- Date Published:
- Journal Name:
- ACM Transactions on Computing for Healthcare
- Volume:
- 3
- Issue:
- 3
- ISSN:
- 2691-1957
- Page Range / eLocation ID:
- 1 to 18
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Epilepsy is a brain disorder that causes seizures, affecting nearly half a million children in the US alone. In this study, we aimed to use a nonlinear driven method to characterize scalp EEG recordings of pediatric epilepsy patients (PE: n=7) compared to pediatric control subjects (PC: n=7) in a clinical environment. A time-varying approach was used to construct functional connectivity networks (FCNs) of all subjects. Next, the FCNs are mapped into the form of undirected graphs that are subjected to the extraction of graph theory-based features. An unsupervised clustering technique based on K-mean is used to delineate the PE from the PC group. Our findings show a statistically significant difference in the mean FCNs between PC and PE groups (t(340)=- 15.9899, p<< 0.0001). Performance results showed an accuracy of 92.5% with a sensitivity of 90% and a specificity of 95.3%. This approach can help improve and validate the early diagnosis of PE by applying non-invasive scalp EEG signals.more » « less
-
Epilepsy is a brain disorder that causes seizures, affecting nearly half a million children in the US alone. In this study, we aimed to use a nonlinear driven method to characterize scalp EEG recordings of pediatric epilepsy patients (PE: n=7 ) compared to pediatric control subjects (PC: n=7 ) in a clinical environment. A time-varying approach was used to construct functional connectivity networks (FCNs) of all subjects. Next, the FCNs are mapped into the form of undirected graphs that are subjected to the extraction of graph theory-based features. An unsupervised clustering technique based on K-mean is used to delineate the PE from the PC group. Our findings show a statistically significant difference in the mean FCNs between PC and PE groups (t(340)=−15.9899,p<<0.0001) . Performance results showed an accuracy of 92.5% with a sensitivity of 90% and a specificity of 95.3%. This approach can help improve and validate the early diagnosis of PE by applying non-invasive scalp EEG signals.more » « less
-
The Standard Uptake Value (SUV) is conventionally calculated using the ratio of the injected PET radiotracer dose and subject body weight (Binj) . SUVs are used to obtain SUV ratios (SUVr), an important metric in many Alzheimer's Disease (AD) neuroimaging studies. However, SUVr can be obtained using only neuroimaging data, bypassing the need for Binj . This paper proposes the SUVr-LightWeight (SUVr-LW) algorithm which is not reliant on clinical data and instead focuses on PET intensity values. The SUVr-LW was evaluated using the Centiloid Project Florebetaben (FBB) subject cohort and reached a linear regression slope of 0.98, while the healthy control subjects produced a slope of 0.87.more » « less
-
Abstract Context.Large multi-site neuroimaging datasets have significantly advanced our quest to understand brain-behavior relationships and to develop biomarkers of psychiatric and neurodegenerative disorders. Yet, such data collections come at a cost, as the inevitable differences across samples may lead to biased or erroneous conclusions.Objective.We aim to validate the estimation of individual brain network dynamics fingerprints and appraise sources of variability in large resting-state functional magnetic resonance imaging (rs-fMRI) datasets by providing a novel point of view based on data-driven dynamical models.Approach.Previous work has investigated this critical issue in terms of effects on static measures, such as functional connectivity and brain parcellations. Here, we utilize dynamical models (hidden Markov models—HMM) to examine how diverse scanning factors in multi-site fMRI recordings affect our ability to infer the brain’s spatiotemporal wandering between large-scale networks of activity. Specifically, we leverage a stable HMM trained on the Human Connectome Project (homogeneous) dataset, which we then apply to an heterogeneous dataset of traveling subjects scanned under a multitude of conditions.Main Results.Building upon this premise, we first replicate previous work on the emergence of non-random sequences of brain states. We next highlight how these time-varying brain activity patterns are robust subject-specific fingerprints. Finally, we suggest these fingerprints may be used to assess which scanning factors induce high variability in the data.Significance.These results demonstrate that we can (i) use large scale dataset to train models that can be then used to interrogate subject-specific data, (ii) recover the unique trajectories of brain activity changes in each individual, but also (iii) urge caution as our ability to infer such patterns is affected by how, where and when we do so.more » « less
An official website of the United States government

