skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Equation of State and Cooling of Hyperonic Neutron Stars
We present two recent parametrizations of the equation of state (FSU2R and FSU2H models) that reproduce the properties of nuclear matter and finite nuclei, fulfill constraints on high-density matter stemming from heavy-ion collisions, produce 2 M_Sun neutron stars, and generate neutron star radii below 13 km. Making use of these equations of state, cooling simulations for isolated neutron stars are performed. We find that two of the models studied, FSU2R (with nucleons) and, in particular, FSU2H (with nucleons and hyperons), show very good agreement with cooling observations, even without including nucleon pairing. This indicates that cooling observations are compatible with an equation of state that produces a soft nuclear symmetry energy and, thus, generates small neutron star radii. Nevertheless, both schemes produce cold isolated neutron stars with masses above 1.8 M_Sun.  more » « less
Award ID(s):
1748621
PAR ID:
10418364
Author(s) / Creator(s):
Date Published:
Journal Name:
WORLD SCIENTIFIC
Page Range / eLocation ID:
1860
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: With recent advances in astronomical observations, major progress has been made in determining the pressure of neutron star matter at high density. This pressure is constrained by the neutron star deformability, determined from gravitational waves emitted in a neutron-star merger, and the mass-radii relation of two neutron stars, determined from a new X-ray observatory on the International Space Station. Previous studies have relied on nuclear theory calculations to constrain the equation of state at low density. Here we use a combination of constraints composed of three astronomical observations and twelve nuclear experimental constraints that extend over a wide range of densities. A Bayesian inference framework is then used to obtain a comprehensive nuclear equation of state. This data-centric result provides benchmarks for theoretical calculations and modeling of nuclear matter and neutron stars. Furthermore, it provides insights into the microscopic degrees of freedom of the nuclear matter equation of state and on the composition of neutron stars and their cooling via neutrino radiation. 
    more » « less
  2. Recent experimental and ab initio theory investigations of the 208Pb neutron skin thickness have the potential to inform the neutron star equation of state. In particular, the strong correlation between the 208Pb neutron skin thickness and the pressure of neutron matter at normal nuclear densities leads to modified predictions for the radii, tidal deformabilities, and moments of inertia of typical 1.4M⊙ neutron stars. In the present work, we study the relative impact of these recent analyses of the 208Pb neutron skin thickness on bulk properties of neutron stars within a Bayesian statistical analysis. Two models for the equation of state prior are employed in order to highlight the role of the highly uncertain high-density equation of state. From our combined Bayesian analysis of nuclear theory, nuclear experiment, and observational constraints on the dense matter equation of state, we find at the 90% credibility level R1.4=12.36−0.73+0.38 km for the radius of a 1.4M⊙ neutron star, R2.0=11.96−0.71+0.94 km for the radius of a 2.0M⊙ neutron star, Λ1.4=440−144+103 for the tidal deformability of a 1.4M⊙ neutron star, and I1.338=1.425−0.146+0.074×1045gcm2 for the moment of inertia of PSR J0737-3039A whose mass is 1.338M⊙. 
    more » « less
  3. Neutron star properties depend on both nuclear physics and astrophysical processes, and thus observations of neutron stars offer constraints on both large-scale astrophysics and the behavior of cold, dense matter. In this study, we use astronomical data to jointly infer the universal equation of state of dense matter along with two distinct astrophysical populations: Galactic neutron stars observed electromagnetically and merging neutron stars in binaries observed with gravitational waves. We place constraints on neutron star properties and quantify the extent to which they are attributable to macrophysics or microphysics. We confirm previous results indicating that the Galactic and merging neutron stars have distinct mass distributions. The inferred maximum mass of both Galactic neutron stars, 𝑀pop,EM=2.0⁢5+0.11−0.06⁢𝑀⊙ (median and 90% symmetric credible interval), and merging neutron star binaries, 𝑀pop,GW =1.8⁢5+0.39−0.16⁢𝑀⊙, are consistent with the maximum mass of nonrotating neutron stars set by nuclear physics, 𝑀TOV =2.2⁢8+0.41−0.21⁢𝑀⊙. The radius of a 1.4⁢𝑀⊙ neutron star is 12.2+0.8−0.9  km, consistent with, though ∼20% tighter than, previous results using an identical equation of state model. Even though observed Galactic and merging neutron stars originate from populations with distinct properties, there is currently no evidence that astrophysical processes cannot produce neutron stars up to the maximum value imposed by nuclear physics. 
    more » « less
  4. Neutron stars were first posited in the early thirties and discovered as pulsars in late sixties; however, only recently are we beginning to understand the matter they contain. This talk describes the continuing development of a consistent picture of the liquid interiors of neutron stars, driven by four advances: observations of heavy neutron stars with masses in the range of two solar masses; inferences of masses and radii simultaneously for an increasing number of neutron stars in low mass X-ray binaries, and ongoing determinations via the NICER observatory; the observation of the binary neutron star merger, GW170817, through gravitational waves as well as across the electromagnetic spectrum; and an emerging understanding in QCD of how nuclear matter can turn into deconfined quark matter in the interior. We describe the modern quark-hadron crossover equation of state, QHC18 and now QHC19, and the corresponding neutron stars, which agree well with current observations. 
    more » « less
  5. Neutron stars provide a window into the properties of dense nuclear matter. Several recent observational and theoretical developments provide powerful constraints on their structure and internal composition. Among these are the first observed binary neutron star merger, GW170817, whose gravitational radiation was accompanied by electromagnetic radiation from a short γ-ray burst and an optical afterglow believed to be due to the radioactive decay of newly minted heavy r-process nuclei. These observations give important constraints on the radii of typical neutron stars and on the upper limit to the neutron star maximum mass and complement recent pulsar observations that established a lower limit. Pulse-profile observations by the Neutron Star Interior Composition Explorer (NICER) X-ray telescope provide an independent, consistent measure of the neutron star radius. Theoretical many-body studies of neutron matter reinforce these estimates of neutron star radii. Studies using parameterized dense matter equations of state (EOSs) reveal several EOS-independent relations connecting global neutron star properties. 
    more » « less