Abstract CompOSE (CompStar Online Supernovae Equations of State) is an online repository of equations of state (EoS) for use in nuclear physics and astrophysics, e.g., in the description of compact stars or the simulation of core-collapse supernovae and neutron-star mergers, see . The main services, offered via the website, are: a collection of data tables in a flexible and easily extendable data format for different EoS types and related physical quantities with extensive documentation and referencing; software for download to extract and to interpolate these data and to calculate additional quantities; webtools to generate EoS tables that are customized to the needs of the users and to illustrate dependencies of various EoS quantities in graphical form. This manual is an update of previous versions that are available on the CompOSE website, at , and that was originally published in the journal “Physics of Particles and Nuclei” with . It contains a detailed description of the service, containing a general introduction as well as instructions for potential contributors and for users. Short versions of the manual for EoS users and providers will also be available as separate publications. Graphical Abstract
more »
« less
Quick Guides for Use of the CompOSE Data Base
We present a combination of two quick guides aimed at summarizing relevant information about the CompOSE nuclear equation of state repository. The first is aimed at nuclear physicists and describes how to provide standard equation of state tables. The second quick guide is meant for users and describes the basic procedures to obtain customized tables with equation of state data. Several examples are included to help providers and users to understand and benefit from the CompOSE database.
more »
« less
- Award ID(s):
- 1748621
- PAR ID:
- 10418379
- Date Published:
- Journal Name:
- Particles
- Volume:
- 5
- Issue:
- 3
- ISSN:
- 2571-712X
- Page Range / eLocation ID:
- 346 to 360
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a much improved equation of state for neutron star matter, QHC19, with a smooth crossover from the hadronic regime at lower densities to the quark regime at higher densities. We now use the Togashi et al.equation of state, a generalization of the Akmal–Pandharipande–Ravenhall equation of state of uniform nuclear matter, in the entire hadronic regime; the Togashi equation of state consistently describes nonuniform as well as uniform matter, and matter at beta equilibrium without the need for an interpolation between pure neutron and symmetric nuclear matter. We describe the quark matter regime at higher densities with the Nambu–Jona–Lasinio model, now identifying tight constraints on the phenomenological universal vector repulsion between quarks and the pairing interaction between quarks arising from the requirements of thermodynamic stability and causal propagation of sound. The resultant neutron star properties agree very well with the inferences of the LIGO/Virgo collaboration, from GW170817, of the pressure versus baryon density, neutron star radii, and tidal deformabilities. The maximum neutron star mass allowed by QHC19 is 2.35 solar masses, consistent with all neutron star mass determinations.more » « less
-
null (Ed.)Abstract The paper describes an ongoing effort in developing a declarative system for supporting operators in the Nuclear Power Plant (NPP) control room. The focus is on two modules: diagnosis and explanation of events that happened in NPPs. We describe an Answer Set Programming (ASP) representation of an NPP, which consists of declarations of state variables, components, their connections, and rules encoding the plant behavior. We then show how the ASP program can be used to explain the series of events that occurred in the Three Mile Island, Unit 2 (TMI-2) NPP accident, the most severe accident in the USA nuclear power plant operating history. We also describe an explanation module aimed at addressing answers to questions such as “why an event occurs?” or “what should be done?” given the collected data.more » « less
-
null (Ed.)We review the equation of state of QCD matter at finite densities. We discuss the construction of the equation of state with net baryon number, electric charge, and strangeness using the results of lattice QCD simulations and hadron resonance gas models. Its application to the hydrodynamic analyses of relativistic nuclear collisions suggests that the interplay of multiple conserved charges is important in the quantitative understanding of the dense nuclear matter created at lower beam energies. Several different models of the QCD equation of state are discussed for comparison.more » « less
-
Abstract: With recent advances in astronomical observations, major progress has been made in determining the pressure of neutron star matter at high density. This pressure is constrained by the neutron star deformability, determined from gravitational waves emitted in a neutron-star merger, and the mass-radii relation of two neutron stars, determined from a new X-ray observatory on the International Space Station. Previous studies have relied on nuclear theory calculations to constrain the equation of state at low density. Here we use a combination of constraints composed of three astronomical observations and twelve nuclear experimental constraints that extend over a wide range of densities. A Bayesian inference framework is then used to obtain a comprehensive nuclear equation of state. This data-centric result provides benchmarks for theoretical calculations and modeling of nuclear matter and neutron stars. Furthermore, it provides insights into the microscopic degrees of freedom of the nuclear matter equation of state and on the composition of neutron stars and their cooling via neutrino radiation.more » « less
An official website of the United States government

