skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: QTROJAN: A Circuit Backdoor Against Quantum Neural Networks
We propose a circuit-level backdoor attack, QTrojan, against Quantum Neural Networks (QNNs) in this paper. QTrojan is implemented by a few quantum gates inserted into the variational quantum circuit of the victim QNN. QTrojan is much stealthier than a prior Data-Poisoning-based Backdoor Attack (DPBA) since it does not embed any trigger in the inputs of the victim QNN or require access to original training datasets. Compared to a DPBA, QTrojan improves the clean data accuracy by 21% and the attack success rate by 19.9%.  more » « less
Award ID(s):
1908992
PAR ID:
10418392
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Acoustics, Speech and Signal Processing
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the success of deep learning algorithms in various domains, studying adversarial attacks to secure deep models in real world applications has become an important research topic. Backdoor attacks are a form of adversarial attacks on deep networks where the attacker provides poisoned data to the victim to train the model with, and then activates the attack by showing a specific small trigger pattern at the test time. Most state-of-the-art backdoor attacks either provide mislabeled poisoning data that is possible to identify by visual inspection, reveal the trigger in the poisoned data, or use noise to hide the trigger. We propose a novel form of backdoor attack where poisoned data look natural with correct labels and also more importantly, the attacker hides the trigger in the poisoned data and keeps the trigger secret until the test time. We perform an extensive study on various image classification settings and show that our attack can fool the model by pasting the trigger at random locations on unseen images although the model performs well on clean data. We also show that our proposed attack cannot be easily defended using a state-of-the-art defense algorithm for backdoor attacks. 
    more » « less
  2. The software supply chain (SSC) attack has become one of the crucial issues that are being increased rapidly with the advancement of the software development domain. In general, SSC attacks execute during the software development processes lead to vulnerabilities in software products targeting downstream customers and even involved stakeholders. Machine Learning approaches are proven in detecting and preventing software security vulnerabilities. Besides, emerging quantum machine learning can be promising in addressing SSC attacks. Considering the distinction between traditional and quantum machine learning, performance could be varies based on the proportions of the experimenting dataset. In this paper, we conduct a comparative analysis between quantum neural networks (QNN) and conventional neural networks (NN) with a software supply chain attack dataset known as ClaMP. Our goal is to distinguish the performance between QNN and NN and to conduct the experiment, we develop two different models for QNN and NN by utilizing Pennylane for quantum and TensorFlow and Keras for traditional respectively. We evaluated the performance of both models with different proportions of the ClaMP dataset to identify the f1 score, recall, precision, and accuracy. We also measure the execution time to check the efficiency of both models. The demonstration result indicates that execution time for QNN is slower than NN with a higher percentage of datasets. Due to recent advancements in QNN, a large level of experiments shall be carried out to understand both models accurately in our future research. 
    more » « less
  3. The software supply chain (SSC) attack has become one of the crucial issues that are being increased rapidly with the advancement of the software development domain. In general, SSC attacks execute during the software development processes lead to vulnerabilities in software products targeting downstream customers and even involved stakeholders. Machine Learning approaches are proven in detecting and preventing software security vulnerabilities. Besides, emerging quantum machine learning can be promising in addressing SSC attacks. Considering the distinction between traditional and quantum machine learning, performance could be varies based on the proportions of the experimenting dataset. In this paper, we conduct a comparative analysis between quantum neural networks (QNN) and conventional neural networks (NN) with a software supply chain attack dataset known as ClaMP. Our goal is to distinguish the performance between QNN and NN and to conduct the experiment, we develop two different models for QNN and NN by utilizing Pennylane for quantum and TensorFlow and Keras for traditional respectively. We evaluated the performance of both models with different proportions of the ClaMP dataset to identify the f1 score, recall, precision, and accuracy. We also measure the execution time to check the efficiency of both models. The demonstration result indicates that execution time for QNN is slower than NN with a higher percentage of datasets. Due to recent advancements in QNN, a large level of experiments shall be carried out to understand both models accurately in our future research. 
    more » « less
  4. We report a new neural backdoor attack, named Hibernated Backdoor, which is stealthy, aggressive and devastating. The backdoor is planted in a hibernated mode to avoid being detected. Once deployed and fine-tuned on end-devices, the hibernated backdoor turns into the active state that can be exploited by the attacker. To the best of our knowledge, this is the first hibernated neural backdoor attack. It is achieved by maximizing the mutual information (MI) between the gradients of regular and malicious data on the model. We introduce a practical algorithm to achieve MI maximization to effectively plant the hibernated backdoor. To evade adaptive defenses, we further develop a targeted hibernated backdoor, which can only be activated by specific data samples and thus achieves a higher degree of stealthiness. We show the hibernated backdoor is robust and cannot be removed by existing backdoor removal schemes. It has been fully tested on four datasets with two neural network architectures, compared to five existing backdoor attacks, and evaluated using seven backdoor detection schemes. The experiments demonstrate the effectiveness of the hibernated backdoor attack under various settings. 
    more » « less
  5. The burgeoning fields of machine learning (ML) and quantum machine learning (QML) have shown remarkable potential in tackling complex problems across various domains. However, their susceptibility to adversarial attacks raises concerns when deploying these systems in security-sensitive applications. In this study, we present a comparative analysis of the vulnerability of ML and QML models, specifically conventional neural networks (NN) and quantum neural networks (QNN), to adversarial attacks using a malware dataset. We utilize a software supply chain attack dataset known as ClaMP and develop two distinct models for QNN and NN, employing Pennylane for quantum implementations and TensorFlow and Keras for traditional implementations. Our methodology involves crafting adversarial samples by introducing random noise to a small portion of the dataset and evaluating the impact on the models’ performance using accuracy, precision, recall, and F1 score metrics. Based on our observations, both ML and QML models exhibit vulnerability to adversarial attacks. While the QNN’s accuracy decreases more significantly compared to the NN after the attack, it demonstrates better performance in terms of precision and recall, indicating higher resilience in detecting true positives under adversarial conditions. We also find that adversarial samples crafted for one model type can impair the performance of the other, highlighting the need for robust defense mechanisms. Our study serves as a foundation for future research focused on enhancing the security and resilience of ML and QML models, particularly QNN, given its recent advancements. A more extensive range of experiments will be conducted to better understand the performance and robustness of both models in the face of adversarial attacks. 
    more » « less