The X-ray-induced spin crossover transition of an Fe (II) molecular thin film in the presence and absence of a magnetic field has been investigated. The thermal activation energy barrier in the soft X-ray activation of the spin crossover transition for [Fe{H2B(pz)2}2(bipy)] molecular thin films is reduced in the presence of an applied magnetic field, as measured through X-ray absorption spectroscopy at various temperatures. The influence of a 1.8 T magnetic field is sufficient to cause deviations from the expected exponential spin state transition behavior which is measured in the field free case. We find that orbital moment diminishes with increasing temperature, relative to the spin moment in the vicinity of room temperature.
more »
« less
A Facile Aqueous Solution Route for the Growth of Chalcogenide Perovskite BaZrS3 Films
The prototypical chalcogenide perovskite, BaZrS3 (BZS), with its direct bandgap of 1.7–1.8 eV, high chemical stability, and strong light–matter interactions, has garnered significant interest over the past few years. So far, attempts to grow BaZrS3 films have been limited mainly to physical vapor deposition techniques. Here, we report the fabrication of BZS thin films via a facile aqueous solution route of polymer-assisted deposition (PAD), where the polymer-chelated cation precursor films were sulfurized in a mixed CS2 and Ar atmosphere. The formation of a single-phase polycrystalline BZS thin film at a processing temperature of 900 °C was confirmed by X-ray diffraction and Raman spectroscopy. The stoichiometry of the films was verified by Rutherford Backscattering spectrometry and energy-dispersive X-ray spectroscopy. The BZS films showed a photoluminescence peak at around 1.8 eV and exhibited a photogenerated current under light illumination at a wavelength of 530 nm. Temperature-dependent resistivity analysis revealed that the conduction of BaZrS3 films under the dark condition could be described by the Efros–Shklovskii variable range hopping model in the temperature range of 60–300 K, with an activation energy of about 44 meV.
more »
« less
- PAR ID:
- 10418625
- Date Published:
- Journal Name:
- Photonics
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 2304-6732
- Page Range / eLocation ID:
- 366
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report the first direct synthesis of graphene on SiO2/Si by hot-filament chemical vapor deposition. Graphene deposition was conducted at low pressures (35 Torr) with a mixture of methane/hydrogen and a substrate temperature of 970 °C followed by spontaneous cooling to room temperature. A thin copper-strip was deposited in the middle of the SiO2/Si substrate as catalytic material. Raman spectroscopy mapping and atomic force microscopy measurements indicate the growth of few-layers of graphene over the entire SiO2/Si substrate, far beyond the thin copper-strip, while X-ray photoelectron spectroscopy and energy-dispersive X-ray spectroscopy showed negligible amounts of copper next to the initially deposited strip. The scale of the graphene nanocrystal was estimated by Raman spectroscopy and scanning electron microscopy.more » « less
-
The development of functional chalcogenide optical phase change materials holds significant promise for advancing optics and photonics applications. Our comprehensive investigation into the solution processing of Sb2Se3 thin films presents a systematic approach from solvent exploration to substrate coating through drop-casting methods and heat treatments. By employing characterization techniques such as scanning electron microscopy, dynamic light scattering, energy-dispersive X-ray spectroscopy, Raman spectroscopy, and X-ray diffraction, we reveal crucial insights into the structural, compositional, and morphological properties of the films as well as demonstrated techniques for control over these features to ensure requisite optical quality. Our findings, compared with currently reported deposition techniques, highlight the potential of solution deposition as a route for scalable Sb2Se3 film processing.more » « less
-
null (Ed.)Silica nanosprings (NS) were coated with gallium nitride (GaN) by high-temperature atomic layer deposition. The deposition temperature was 800 °C using trimethylgallium (TMG) as the Ga source and ammonia (NH3) as the reactive nitrogen source. The growth of GaN on silica nanosprings was compared with deposition of GaN thin films to elucidate the growth properties. The effects of buffer layers of aluminum nitride (AlN) and aluminum oxide (Al2O3) on the stoichiometry, chemical bonding, and morphology of GaN thin films were determined with X-ray photoelectron spectroscopy (XPS), high-resolution x-ray diffraction (HRXRD), and atomic force microscopy (AFM). Scanning and transmission electron microscopy of coated silica nanosprings were compared with corresponding data for the GaN thin films. As grown, GaN on NS is conformal and amorphous. Upon introducing buffer layers of Al2O3 or AlN or combinations thereof, GaN is nanocrystalline with an average crystallite size of 11.5 ± 0.5 nm. The electrical properties of the GaN coated NS depends on whether or not a buffer layer is present and the choice of the buffer layer. In addition, the IV curves of GaN coated NS and the thin films (TF) with corresponding buffer layers, or lack thereof, show similar characteristic features, which supports the conclusion that atomic layer deposition (ALD) of GaN thin films with and without buffer layers translates to 1D nanostructures.more » « less
-
null (Ed.)Motivated by their utility in CdTe-based thin film photovoltaics (PV) devices, an investigation of thin films of the magnesium-zinc oxide (MgxZn1−xO or MZO) alloy system was undertaken applying spectroscopic ellipsometry (SE). Dominant wurtzite phase MZO thin films with Mg contents in the range 0 ≤ x ≤ 0.42 were deposited on room temperature soda lime glass (SLG) substrates by magnetron co-sputtering of MgO and ZnO targets followed by annealing. The complex dielectric functions ε of these films were determined and parameterized over the photon energy range from 0.73 to 6.5 eV using an analytical model consisting of two critical point (CP) oscillators. The CP parameters in this model are expressed as polynomial functions of the best fitting lowest CP energy or bandgap E0 = Eg, which in turn is a quadratic function of x. As functions of x, both the lowest energy CP broadening and the Urbach parameter show minima for x ~ 0.3, which corresponds to a bandgap of 3.65 eV. As a result, it is concluded that for this composition and bandgap, the MZO exhibits either a minimum concentration of defects in the bulk of the crystallites or a maximum in the grain size, an observation consistent with measured X-ray diffraction line broadenings. The parametric expression for ε developed here is expected to be useful in future mapping and through-the-glass SE analyses of partial and complete PV device structures incorporating MZO.more » « less
An official website of the United States government

