skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ZrNb(CO) RF Superconducting Thin Film with High Critical Temperature in the Theoretical Limit
Abstract Superconducting radio‐frequency (SRF) resonators are critical components for particle accelerator applications, such as free‐electron lasers, and for emerging technologies in quantum computing. Developing advanced materials and their deposition processes to produce RF superconductors that yield nΩ surface resistances is a key metric for the wider adoption of SRF technology. Here, ZrNb(CO) RF superconducting films with high critical temperatures (Tc) achieved for the first time under ambient pressure are reported. The attainment of aTcnear the theoretical limit for this material without applied pressure is promising for its use in practical applications. A range ofTc, likely arising from Zr doping variation, may allow a tunable superconducting coherence length that lowers the sensitivity to material defects when an ultra‐low surface resistance is required. The ZrNb(CO) films are synthesized using a low‐temperature (100 – 200 °C) electrochemical recipe combined with thermal annealing. The phase transformation as a function of annealing temperature and time is optimized by the evaporated Zr‐Nb diffusion couples. Through phase control, one avoids hexagonal Zr phases that are equilibrium‐stable but degradeTc. X‐ray and electron diffraction combined with photoelectron spectroscopy reveal a system containing cubic β‐ZrNb mixed with rocksalt NbC and low‐dielectric‐loss ZrO2. Proof‐of‐concept RF performance of ZrNb(CO) on an SRF sample test system is demonstrated. BCS resistance trends lower than reference Nb, while quench fields occur at approximately 35 mT. The results demonstrate the potential of ZrNb(CO) thin films for particle accelerators and other SRF applications.  more » « less
Award ID(s):
1719875
PAR ID:
10425203
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Advanced Electronic Materials
Volume:
9
Issue:
8
ISSN:
2199-160X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Workbench-size particle accelerators, enabled by Nb3Sn-based superconducting radio-frequency (SRF) cavities, hold the potential of driving scientific discovery by offering a widely accessible and affordable source of high-energy electrons and x-rays. Thin-film Nb3Sn RF superconductors with high quality factors, high operation temperatures, and high-field potentials are critical for these devices. However, surface roughness, non-stoichiometry, and impurities in Nb3Sn deposited by conventional Sn-vapor diffusion prevent them from reaching their theoretical capabilities. Here we demonstrate a seed-free electrochemical synthesis that pushes the limit of chemical and physical properties in Nb3Sn. Utilization of electrochemical Sn pre-deposits reduces the roughness of converted Nb3Sn by five times compared to typical vapor-diffused Nb3Sn. Quantitative mappings using chemical and atomic probes confirm improved stoichiometry and minimized impurity concentrations in electrochemically synthesized Nb3Sn. We have successfully applied this Nb3Sn to the large-scale 1.3 GHz SRF cavity and demonstrated ultra-low BCS surface resistances at multiple operation temperatures, notably lower than vapor-diffused cavities. Our smooth, homogeneous, high-purity Nb3Sn provides the route toward high efficiency and high fields for SRF applications under helium-free cryogenic operations. 
    more » « less
  2. Abstract Surface structures on radio-frequency (RF) superconductors are crucially important in determining their interaction with the RF field. Here we investigate the surface compositions, structural profiles, and valence distributions of oxides, carbides, and impurities on niobium (Nb) and niobium–tin (Nb3Sn)in situunder different processing conditions. We establish the underlying mechanisms of vacuum baking and nitrogen processing in Nb and demonstrate that carbide formation induced during high-temperature baking, regardless of gas environment, determines subsequent oxide formation upon air exposure or low-temperature baking, leading to modifications of the electron population profile. Our findings support the combined contribution of surface oxides and second-phase formation to the outcome of ultra-high vacuum baking (oxygen processing) and nitrogen processing. Also, we observe that vapor-diffused Nb3Sn contains thick metastable oxides, while electrochemically synthesized Nb3Sn only has a thin oxide layer. Our findings reveal fundamental mechanisms of baking and processing Nb and Nb3Sn surface structures for high-performance superconducting RF and quantum applications. 
    more » « less
  3. Superconducting Radio Frequency (SRF) cavities used in particle accelerators are typically formed from or coated with superconducting materials. Currently, high purity niobium is the material of choice for SRF cavities that have been optimized to operate near their theoretical field limits. This brings about the need for significant R & D efforts to develop next generation superconducting materials that could outperform Nb and keep up with the demands of new accelerator facilities. To achieve high quality factors and accelerating gradients, the cavity material should be able to remain in the superconducting Meissner state under a high RF magnetic field without penetration of quantized magnetic vortices through the cavity wall. Therefore, the magnetic field at which vortices penetrate a superconductor is one of the key parameters of merit of SRF cavities. Techniques to measure the onset of magnetic field penetration on thin film samples need to be developed to mitigate the issues with the conventional magnetometry measurements that are strongly influenced by the film orientation and shape and edge effects. In this work, we report the development of an experimental setup to measure the field of full flux penetration through films and multi-layered superconductors. Our system combines a small superconducting solenoid that can generate a magnetic field of up to 500 mT at the sample surface and three Hall probes to detect the full flux penetration through the superconductor. This setup can be used to study alternative materials that could potentially outperform niobium, as well as superconductor–insulator–superconductor (SIS) multilayer coatings on niobium. 
    more » « less
  4. Abstract Experiments investigating magnetic-field-tuned superconductor–insulator transition (HSIT) mostly focus on two-dimensional material systems where the transition and its proximate ground-state phases, often exhibit features that are seemingly at odds with the expected behavior. Here we present a complementary study of a three-dimensional pressure-packed amorphous indium-oxide (InOx) powder where granularity controls the HSIT. Above a low threshold pressure of ∼0.2 GPa, vestiges of superconductivity are detected, although neither a true superconducting transition nor insulating behavior are observed. Instead, a saturation at very high resistivity at low pressure is followed by saturation at very low resistivity at higher pressure. We identify both as different manifestations of anomalous metallic phases dominated by superconducting fluctuations. By analogy with previous identification of the low resistance saturation as a ‘failed superconductor’, our data suggests that the very high resistance saturation is a manifestation of a ‘failed insulator’. Above a threshold pressure of ∼6 GPa, the sample becomes fully packed, and superconductivity is robust, withTCtunable with pressure. A quantum critical point atPC∼ 25 GPa marks the complete suppression of superconductivity. For a finite pressure belowPC, a magnetic field is shown to induce a HSIT from a true zero-resistance superconducting state to a weakly insulating behavior. Determining the critical field,HC, we show that similar to the 2D behavior, the insulating-like state maintains a superconducting character, which is quenched at higher field, above which the magnetoresistance decreases to its fermionic normal state value. 
    more » « less
  5. For next-generation superconducting radiofrequency (SRF) cavities, the interior walls of existing Nb SRF cavities are coated with a thin Nb3Sn film to improve the superconducting properties for more efficient, powerful accelerators. The superconducting properties of these Nb3Sn coatings are limited due to inhomogeneous growth resulting from poor nucleation during the Sn vapor diffusion procedure. To develop a predictive growth model for Nb3Sn grown via Sn vapor diffusion, we aim to understand the interplay between the underlying Nb oxide morphology, Sn coverage, and Nb substrate heating conditions on Sn wettability, intermediate surface phases, and eventual Nb3Sn nucleation. In this work, Nb-Sn intermetallic species are grown on a single crystal Nb(100) in an ultrahigh vacuum chamber equipped with in situ surface characterization techniques including scanning tunneling microscopy, Auger electron spectroscopy, and x-ray photoelectron spectroscopy. Sn adsorbate behavior on oxidized Nb was examined by depositing Sn with submonolayer precision on a Nb substrate held at varying deposition temperatures (Tdep). Experimental data of annealed intermetallic adlayers provide evidence of how Nb substrate oxidization and Tdep impact Nb-Sn intermetallic coordination. The presented experimental data contextualize how vapor and substrate conditions, such as the Sn flux and Nb surface oxidation, drive homogeneous Nb3Sn film growth during the Sn vapor diffusion procedure on Nb SRF cavity surfaces. This work, as well as concurrent growth studies of Nb3Sn formation that focus on the initial Sn nucleation events on Nb surfaces, will contribute to the future experimental realization of optimal, homogeneous Nb3Sn SRF films. 
    more » « less