skip to main content


This content will become publicly available on March 8, 2024

Title: Latency and Reliability Aware SDN Controller: A Role Delegation Function as a Service
The emergency of machine type and ultra-reliable low latency communication is imposing stringent constraints for service provisioning. Addressing such constraints is challenging for network and cloud service providers. As a trending paradigm, software-defined networking (SDN) plays a significant role in future networks and services. However, the classical implementation of the SDN controller has limitations in-terms-of latency and reliability since the controller is decoupled from the forwarding device. Several research works have tried to tackle these challenges by proposing solutions such as Devoflow, DIFANE, and hierarchical and distributed controller deployment. Nonetheless, these approaches are not fully addressing these challenges. This paper tries to address the problem of latency and reliability by proposing a dynamic controller role delegation architecture for forwarding devices. To align with the microservice or multi-agent-based service-based architecture, the role delegation function as a service is proposed. The dynamic role delegation enables to predict and (pre-)installed flow rules in the forwarding devices based on various considerations such as network state, packet type, and service's stringent requirements. The proposed architecture is implemented and evaluated for latency and resiliency performance in comparison to the centralized and distributed deployment of the SDN controller. We used ComNetsEmu, a softwarized network emulation tool, to emulate SDN and NFV (Network Function Virtualization). The result indicated a significant decrease in latency and improved resilience in case of failure, yielding better network performance.  more » « less
Award ID(s):
1757207
NSF-PAR ID:
10418698
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
2023 IEEE 13th Annual Computing and Communication Workshop and Conference (CCWC)
Page Range / eLocation ID:
0205 to 0211
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A centralized Software-defined Network (SDN) controller, due to its nature, faces many issues such as a single point of failure, computational complexity growth, different types of attacks, reliability challenges and scalability concerns. One of the most common fifth generation cyber-attacks is the Distributed Denial of Service (DDoS) attack. Having a single SDN controller can lead to a plethora of issues with respect to latency, computational complexity in the control plane, reachability, and scalability as the network scale increases. To address these issues, state-of-the-art approaches have investigated multiple SDN controllers in the network. The placement of these multiple controllers has drawn more attention in recent studies. In our previous work, we evaluated an Entropy-based technique and a machine learning-based Support Vector Machine (SVM) to detect DDoS using a single SDN controller. In this paper, we extend our previous work to further decrease the impact of the DDoS attacks on the SDN controller. Our new technique called Hierarchical Classic Controllers (HCC) uses SVM and Entropy methods to detect abnormal traffic which can lead to network failures caused by overwhelming a single controller. Determining the number of controllers and their best placement are major contributions in our new method. Our results show that the combination of the above three methods (HCC with SVM and Entropy), in the case of a network with 3 controllers provides greater accuracy and improves the DDoS attack detection rate to 86.12% compared to 79.03% and 81.33% using Entropy-based HCC and SVM-based HCC, respectively. 
    more » « less
  2. The supervisory control and data acquisition (SCADA) network in a smart grid requires to be reliable and efficient to transmit real-time data to the controller. Introducing SDN into a SCADA network helps in deploying novel grid control operations, as well as, their management. As the overall network cannot be transformed to have only SDN-enabled devices overnight because of budget constraints, a systematic deployment methodology is needed. In this work, we present a framework, named SDNSynth, that can design a hybrid network consisting of both legacy forwarding devices and programmable SDN-enabled switches. The design satisfies the resiliency requirements of the SCADA network, which are specified with respect to a set of identified threat vectors. The deployment plan primarily includes the best placements of the SDN-enabled switches. The plan may include one or more links to be installed newly. We model and implement the SDNSynth framework that includes the satisfaction of several requirements and constraints involved in the resilient operation of the SCADA. It uses satisfiability modulo theories (SMT) for encoding the synthesis model and solving it. We demonstrate SDNSynth on a case study and evaluate its performance on different synthetic SCADA systems. 
    more » « less
  3. null (Ed.)
    Wireless infrastructure is steadily evolving into wireless access for all humans and most devices, from 5G to Internet-of-Things. This widespread access creates the expectation of custom and adaptive services from the personal network to the backbone network. In addition, challenges of scale and interoperability exist across networks, applications and services, requiring an effective wireless network management infrastructure. For this reason Software-Defined Networks (SDN) have become an attractive research area for wireless and mobile systems. SDN can respond to sporadic topology issues such as dropped packets, message latency, and/or conflicting resource management, to improved collaboration between mobile access points, reduced interference and increased security options. Until recently, the main focus on wireless SDN has been a more centralized approach, which has issues with scalability, fault tolerance, and security. In this work, we propose a state of the art WAM-SDN system for large-scale network management. We discuss requirements for large scale wireless distributed WAM-SDN and provide preliminary benchmarking and performance analysis based on our hybrid distributed and decentralized architecture. Keywords: software defined networks, controller optimization, resilience. 
    more » « less
  4. Green wireless networks Wake-up radio Energy harvesting Routing Markov decision process Reinforcement learning 1. Introduction With 14.2 billions of connected things in 2019, over 41.6 billions expected by 2025, and a total spending on endpoints and services that will reach well over $1.1 trillion by the end of 2026, the Internet of Things (IoT) is poised to have a transformative impact on the way we live and on the way we work [1–3]. The vision of this ‘‘connected continuum’’ of objects and people, however, comes with a wide variety of challenges, especially for those IoT networks whose devices rely on some forms of depletable energy support. This has prompted research on hardware and software solutions aimed at decreasing the depen- dence of devices from ‘‘pre-packaged’’ energy provision (e.g., batteries), leading to devices capable of harvesting energy from the environment, and to networks – often called green wireless networks – whose lifetime is virtually infinite. Despite the promising advances of energy harvesting technologies, IoT devices are still doomed to run out of energy due to their inherent constraints on resources such as storage, processing and communica- tion, whose energy requirements often exceed what harvesting can provide. The communication circuitry of prevailing radio technology, especially, consumes relevant amount of energy even when in idle state, i.e., even when no transmissions or receptions occur. Even duty cycling, namely, operating with the radio in low energy consumption ∗ Corresponding author. E-mail address: koutsandria@di.uniroma1.it (G. Koutsandria). https://doi.org/10.1016/j.comcom.2020.05.046 (sleep) mode for pre-set amounts of time, has been shown to only mildly alleviate the problem of making IoT devices durable [4]. An effective answer to eliminate all possible forms of energy consumption that are not directly related to communication (e.g., idle listening) is provided by ultra low power radio triggering techniques, also known as wake-up radios [5,6]. Wake-up radio-based networks allow devices to remain in sleep mode by turning off their main radio when no communication is taking place. Devices continuously listen for a trigger on their wake-up radio, namely, for a wake-up sequence, to activate their main radio and participate to communication tasks. Therefore, devices wake up and turn their main radio on only when data communication is requested by a neighboring device. Further energy savings can be obtained by restricting the number of neighboring devices that wake up when triggered. This is obtained by allowing devices to wake up only when they receive specific wake-up sequences, which correspond to particular protocol requirements, including distance from the destina- tion, current energy status, residual energy, etc. This form of selective awakenings is called semantic addressing [7]. Use of low-power wake-up radio with semantic addressing has been shown to remarkably reduce the dominating energy costs of communication and idle listening of traditional radio networking [7–12]. This paper contributes to the research on enabling green wireless networks for long lasting IoT applications. Specifically, we introduce a ABSTRACT This paper presents G-WHARP, for Green Wake-up and HARvesting-based energy-Predictive forwarding, a wake-up radio-based forwarding strategy for wireless networks equipped with energy harvesting capabilities (green wireless networks). Following a learning-based approach, G-WHARP blends energy harvesting and wake-up radio technology to maximize energy efficiency and obtain superior network performance. Nodes autonomously decide on their forwarding availability based on a Markov Decision Process (MDP) that takes into account a variety of energy-related aspects, including the currently available energy and that harvestable in the foreseeable future. Solution of the MDP is provided by a computationally light heuristic based on a simple threshold policy, thus obtaining further computational energy savings. The performance of G-WHARP is evaluated via GreenCastalia simulations, where we accurately model wake-up radios, harvestable energy, and the computational power needed to solve the MDP. Key network and system parameters are varied, including the source of harvestable energy, the network density, wake-up radio data rate and data traffic. We also compare the performance of G-WHARP to that of two state-of-the-art data forwarding strategies, namely GreenRoutes and CTP-WUR. Results show that G-WHARP limits energy expenditures while achieving low end-to-end latency and high packet delivery ratio. Particularly, it consumes up to 34% and 59% less energy than CTP-WUR and GreenRoutes, respectively. 
    more » « less
  5. Residential networks are home to increasingly diverse devices, including embedded devices that are part of the Internet of Things phenomenon, leading to new management and security challenges. However, current residential solutions that rely on customer premises equipment (CPE), which often remains deployed in homes for years without updates or maintenance, are not evolving to keep up with these emerging demands. Recently, researchers have proposed to outsource the tasks of managing and securing residential networks to cloud-based security services by leveraging software-defined networking (SDN). However, the use of cloud-based infrastructure may have performance implications. In this paper, we measure the performance impact and perception of a residential SDN using a cloud-based controller through two measurement studies. First, we recruit 270 residential users located across the United States to measure residential latency to cloud providers. Our measurements suggest the cloud controller architecture provides 90% of end-users with acceptable performance with judiciously selected public cloud locations. When evaluating web page loading times of popular domains, which are particularly latency-sensitive, we found an increase of a few seconds at the median. However, optimizations could reduce this overhead for top websites in practice. 
    more » « less