skip to main content


Title: Fingerprint Presentation Attack Detection utilizing Time-Series, Color Fingerprint Captures
Fingerprint capture systems can be fooled by widely accessible methods to spoof the system using fake fingers, known as presentation attacks. As biometric recognition systems become more extensively relied upon at international borders and in consumer electronics, presentation attacks are becoming an increasingly serious issue. A robust solution is needed that can handle the increased variability and complexity of spoofing techniques. This paper demonstrates the viability of utilizing a sensor with time-series and color-sensing capabilities to improve the robust-ness of a traditional fingerprint sensor and introduces a comprehensive fingerprint dataset with over 36,000 image sequences and a state-of-the-art set of spoofing techniques. The specific sensor used in this research captures a traditional gray-scale static capture and a time-series color capture simultaneously. Two different methods for Presentation Attack Detection (PAD) are used to assess the benefit of a color dynamic capture. The first algorithm utilizes Static-Temporal Feature Engineering on the fingerprint capture to generate a classification decision. The second generates its classification decision using features extracted by way of the Inception V3 CNN trained on ImageNet. Classification performance is evaluated using features extracted exclusively from the static capture, exclusively from the dynamic capture, and on a fusion of the two feature sets. With both PAD approaches we find that the fusion of the dynamic and static feature-set is shown to improve performance to a level not individually achievable.  more » « less
Award ID(s):
1650503
NSF-PAR ID:
10136374
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
12th IAPR International Conference On Biometrics
Page Range / eLocation ID:
1 to 8
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. With the increasing integration of smartphones into our daily lives, fingerphotos are becoming a potential contactless authentication method. While it offers convenience, it is also more vulnerable to spoofing using various presentation attack instruments (PAI). The contactless fingerprint is an emerging biometric authentication but has not yet been heavily investigated for anti-spoofing. While existing anti-spoofing approaches demonstrated fair results, they have encountered challenges in terms of universality and scalability to detect any unseen/unknown spoofed samples. To address this issue, we propose a universal presentation attack detection method for contactless fingerprints, despite having limited knowledge of presentation attack samples. We generated synthetic contactless fingerprints using StyleGAN from live finger photos and integrating them to train a semi-supervised ResNet-18 model. A novel joint loss function, combining the Arcface and Center loss, is introduced with a regularization to balance between the two loss functions and minimize the variations within the live samples while enhancing the inter-class variations between the deepfake and live samples. We also conducted a comprehensive comparison of different regularizations’ impact on the joint loss function for presentation attack detection (PAD) and explored the performance of a modified ResNet-18 architecture with different activation functions (i.e., leaky ReLU and RelU) in conjunction with Arcface and center loss. Finally, we evaluate the performance of the model using unseen types of spoof attacks and live data. Our proposed method achieves a Bona Fide Classification Error Rate (BPCER) of 0.12%, an Attack Presentation Classification Error Rate (APCER) of 0.63%, and an Average Classification Error Rate (ACER) of 0.37%. 
    more » « less
  2. Finger photo recognition represents a promising touchless technology that offers portable and hygienic authentication solutions in smartphones, eliminating physical contact. Public spaces, such as banks and staff-less stores, benefit from contactless authentication considering the current public health sphere. The user captures the image of their own finger by using the camera integrated in a mobile device. Although recent research has pushed boundaries of finger photo matching, the security of this biometric methodology still represents a concern. Existing systems have been proven to be vulnerable to print attacks by presenting a color paper-printout in front of the camera and photo attacks that consist of displaying the original image in front of the capturing device. This paper aims to improve the performance of finger photo presentation attack detection (PAD) algorithms by investigating deep fusion strategies to combine deep representations obtained from different color spaces. In this work, spoofness is described by combining different color models. The proposed framework integrates multiple convolutional neural networks (CNNs), each trained using patches extracted from a specific color model and centered around minutiae points. Experiments were carried out on a publicly available database of spoofed finger photos obtained from the IIITD Smartphone Finger photo Database with spoof data, including printouts and various display attacks. The results show that deep fusion of the best color models improved the robustness of the PAD system and competed with the state-of-the-art. 
    more » « less
  3. GPS spoofing attacks are a severe threat to unmanned aerial vehicles. These attacks manipulate the true state of the unmanned aerial vehicles, potentially misleading the system without raising alarms. Several techniques, including machine learning, have been proposed to detect these attacks. Most of the studies applied machine learning models without identifying the best hyperparameters, using feature selection and importance techniques, and ensuring that the used dataset is unbiased and balanced. However, no current studies have discussed the impact of model parameters and dataset characteristics on the performance of machine learning models; therefore, this paper fills this gap by evaluating the impact of hyperparameters, regularization parameters, dataset size, correlated features, and imbalanced datasets on the performance of six most commonly known machine learning techniques. These models are Classification and Regression Decision Tree, Artificial Neural Network, Random Forest, Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine. Thirteen features extracted from legitimate and simulated GPS attack signals are used to perform this investigation. The evaluation was performed in terms of four metrics: accuracy, probability of misdetection, probability of false alarm, and probability of detection. The results indicate that hyperparameters, regularization parameters, correlated features, dataset size, and imbalanced datasets adversely affect a machine learning model’s performance. The results also show that the Classification and Regression Decision Tree classifier has an accuracy of 99.99%, a probability of detection of 99.98%, a probability of misdetection of 0.2%, and a probability of false alarm of 1.005%, after removing correlated features and using tuned parameters in a balanced dataset. Random Forest can achieve an accuracy of 99.94%, a probability of detection of 99.6%, a probability of misdetection of 0.4%, and a probability of false alarm of 1.01% in similar conditions. 
    more » « less
  4. GPS spoofing attacks are a severe threat to unmanned aerial vehicles. These attacks manipulate the true state of the unmanned aerial vehicles, potentially misleading the system without raising alarms. Several techniques, including machine learning, have been proposed to detect these attacks. Most of the studies applied machine learning models without identifying the best hyperparameters, using feature selection and importance techniques, and ensuring that the used dataset is unbiased and balanced. However, no current studies have discussed the impact of model parameters and dataset characteristics on the performance of machine learning models; therefore, this paper fills this gap by evaluating the impact of hyperparameters, regularization parameters, dataset size, correlated features, and imbalanced datasets on the performance of six most commonly known machine learning techniques. These models are Classification and Regression Decision Tree, Artificial Neural Network, Random Forest, Logistic Regression, Gaussian Naïve Bayes, and Support Vector Machine. Thirteen features extracted from legitimate and simulated GPS attack signals are used to perform this investigation. The evaluation was performed in terms of four metrics: accuracy, probability of misdetection, probability of false alarm, and probability of detection. The results indicate that hyperparameters, regularization parameters, correlated features, dataset size, and imbalanced datasets adversely affect a machine learning model’s performance. The results also show that the Classification and Regression Decision Tree classifier has an accuracy of 99.99%, a probability of detection of 99.98%, a probability of misdetection of 0.2%, and a probability of false alarm of 1.005%, after removing correlated features and using tuned parameters in a balanced dataset. Random Forest can achieve an accuracy of 99.94%, a probability of detection of 99.6%, a probability of misdetection of 0.4%, and a probability of false alarm of 1.01% in similar conditions. 
    more » « less
  5. The prevalence of voice spoofing attacks in today’s digital world has become a critical security concern. Attackers employ various techniques, such as voice conversion (VC) and text-to-speech (TTS), to generate synthetic speech that imitates the victim’s voice and gain access to sensitive information. The recent advances in synthetic speech generation pose a significant threat to modern security systems, while traditional voice authentication methods are incapable of detecting them effectively. To address this issue, a novel solution for logical access (LA)-based synthetic speech detection is proposed in this paper. SpoTNet is an attention-based spoofing transformer network that includes crafted front-end spoofing features and deep attentive features retrieved using the developed logical spoofing transformer encoder (LSTE). The derived attentive features were then processed by the proposed multi-layer spoofing classifier to classify speech samples as bona fide or synthetic. In synthetic speeches produced by the TTS algorithm, the spectral characteristics of the synthetic speech are altered to match the target speaker’s formant frequencies, while in VC attacks, the temporal alignment of the speech segments is manipulated to preserve the target speaker’s prosodic features. By highlighting these observations, this paper targets the prosodic and phonetic-based crafted features, i.e., the Mel-spectrogram, spectral contrast, and spectral envelope, presenting an effective preprocessing pipeline proven to be effective in synthetic speech detection. The proposed solution achieved state-of-the-art performance against eight recent feature fusion methods with lower EER of 0.95% on the ASVspoof-LA dataset, demonstrating its potential to advance the field of speaker identification and improve speaker recognition systems. 
    more » « less