Abstract The replacement of a CH group of benzene by a triel (Tr) atom places a positive region of electrostatic potential near the Tr atom in the plane of the aromatic ring. This σ‐hole can interact with an X lone pair of XCCH (X=F, Cl, Br, and I) to form a triel bond (TrB). The interaction energy between C5H5Tr and FCCH lies in the range between 2.2 and 4.4 kcal/mol, in the order Tr=B+cation above the ring pulls density toward itself and thus magnifies the Tr σ‐hole. The TrB to the XCCH nucleophile is thereby magnified as is the strength of the TrB. This positive cooperativity is particularly large for Tr=B.
more »
« less
Resonance-assisted intramolecular triel bonds
The possibility that the intramolecular Tr⋯S triel bond is strengthened by resonance is examined by quantum chemical calculations within the planar five-membered ring of TrH 2 –CRCR–CRS (Tr = Al, Ga, In; R = NO 2 , CH 3 ). This internal bond is found to be rather short (2.4–2.7 Å) with a large bond energy between 12 and 21 kcal mol −1 . The pattern of bond length alternation and atomic charges within the ring is consistent with resonance involving the conjugated double bonds. This resonance enhances the triel bond strength by some 25%. The electron-withdrawing NO 2 group weakens the bond, but it is strengthened by the electron-donating CH 3 substituent. NICS analysis suggests the presence of a certain degree of aromaticity within the ring.
more »
« less
- Award ID(s):
- 1954310
- PAR ID:
- 10419554
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 24
- Issue:
- 24
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 15015 to 15024
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The effects on the C−I⋅⋅N halogen bond between iodobenzene and NH3of placing various substituents on the phenyl ring are monitored by quantum calculations. Substituents R=N(CH3)2, NH2, CH3, OCH3, COCH3, Cl, F, COH, CN, and NO2were each placed ortho, meta, and para to the I. The depth of the σ‐hole on I is deepened as R becomes more electron‐withdrawing which is reflected in a strengthening of the halogen bond, which varied between 3.3 and 5.5 kcal mol−1. In most cases, the ortho placement yields the largest perturbation, followed by meta and then para, but this trend is not universal. Parallel to these substituent effects is a progressive lengthening of the covalent C−I bond. Formation of the halogen bond reduces the NMR chemical shielding of all three nuclei directly involved in the C−I⋅⋅N interaction. The deshielding of the electron donor N is most closely correlated with the strength of the bond, as is the coupling constant between I and N, so both have potential use as spectroscopic measures of halogen bond strength.more » « less
-
The π-hole above the plane of the X 2 T′Y molecule (T′ = Si, Ge, Sn; X = F, Cl, H; Y = O, S) was allowed to interact with the TH hydride of TH(CH 3 ) 3 (T = Si, Ge, Sn). The resulting TH⋯T′ tetrel bond is quite strong, with interaction energies exceeding 30 kcal mol −1 . F 2 T′O engages in the strongest such bonds, as compared to F 2 T′S, Cl 2 T′O, or Cl 2 T′S. The bond weakens as T′ grows larger as in Si > Ge > Sn, despite the opposite trend in the depth of the π-hole. The reverse pattern of stronger tetrel bond with larger T is observed for the Lewis base TH(CH 3 ) 3 , even though the minimum in the electrostatic potential around the H is nearly independent of T. The TH⋯T′ arrangement is nonlinear which can be understood on the basis of the positions of the extrema in the molecular electrostatic potentials of the monomers. The tetrel bond is weakened when H 2 O forms an O⋯T′ tetrel bond with the second π-hole of F 2 T′O, and strengthened if H 2 O participates in an OH⋯O H-bond.more » « less
-
null (Ed.)The ability of a TrCl 4 − anion (Tr = Al, Ga, In, Tl) to engage in a triel bond with both a neutral NH 3 and CN − anion is assessed by ab initio quantum calculations in both the gas phase and in aqueous medium. Despite the absence of a positive σ or π-hole on the Lewis acid, strong triel bonds can be formed with either base. The complexation involves an internal restructuring of the tetrahedral TrCl 4 − monomer into a trigonal bipyramid shape, where the base can occupy either an axial or equatorial position. Although this rearrangement requires a substantial investment of energy, it aids the complexation by imparting a much more positive MEP to the site that is to be occupied by the base. Complexation with the neutral base is exothermic in the gas phase and even more so in water where interaction energies can exceed 30 kcal mol −1 . Despite the long-range coulombic repulsion between any pair of anions, CN − can also engage in a strong triel bond with TrCl 4 − . In the gas phase, complexation is endothermic, but dissociation of the metastable dimer is obstructed by an energy barrier. The situation is entirely different in solution, with large negative interaction energies of as much as −50 kcal mol −1 . The complexation remains an exothermic process even after the large monomer deformation energy is factored in.more » « less
-
A complex is assembled which pairs a carboxyl group of X 1 COOH with a 1,2,5-chalcogenadiazole ring containing substituents on its C atoms. The OH of the carboxyl group donates a proton to a N atom of the ring to form a OH⋯N H-bond (HB), while its carbonyl O engages in a Y⋯O chalcogen bond (ChB) with the ring in which Y = S, Se, Te. The ChB is strengthened by enlarging the size of the Y atom from S to Se to Te. Placement of an electron-withdrawing group (EWG) X 1 on the acid strengthens the HB while weakening the ChB; the reverse occurs when EWGs are placed on the ring. By selection of the proper substituents on the two units, it is possible to achieve a near perfect balance between the strengths of these two bonds. These bond strengths are also reflected in the NMR spectroscopic properties of the chemical shielding of the various atoms and the coupling between the nuclei directly involved in each bond.more » « less