We present a progressive approximation algorithm for the exact solution of several classes of interdiction games in which two noncooperative players (namely an attacker and a follower) interact sequentially. The follower must solve an optimization problem that has been previously perturbed by means of a series of attacking actions led by the attacker. These attacking actions aim at augmenting the cost of the decision variables of the follower’s optimization problem. The objective, from the attacker’s viewpoint, is that of choosing an attacking strategy that reduces as much as possible the quality of the optimal solution attainable by the follower. The progressive approximation mechanism consists of the iterative solution of an interdiction problem in which the attacker actions are restricted to a subset of the whole solution space and a pricing subproblem invoked with the objective of proving the optimality of the attacking strategy. This scheme is especially useful when the optimal solutions to the follower’s subproblem intersect with the decision space of the attacker only in a small number of decision variables. In such cases, the progressive approximation method can solve interdiction games otherwise intractable for classical methods. We illustrate the efficiency of our approach on the shortest path, 0-1 knapsack and facility location interdiction games. Summary of Contribution: In this article, we present a progressive approximation algorithm for the exact solution of several classes of interdiction games in which two noncooperative players (namely an attacker and a follower) interact sequentially. We exploit the discrete nature of this interdiction game to design an effective algorithmic framework that improves the performance of general-purpose solvers. Our algorithm combines elements from mathematical programming and computer science, including a metaheuristic algorithm, a binary search procedure, a cutting-planes algorithm, and supervalid inequalities. Although we illustrate our results on three specific problems (shortest path, 0-1 knapsack, and facility location), our algorithmic framework can be extended to a broader class of interdiction problems.
more »
« less
Automated Configuration for Agile Software Environments
The increasing use of the DevOps paradigm in software systems has substantially increased the frequency of configuration parameter setting changes. Ensuring the correctness of such settings is generally a very challenging problem due to the complex interdependencies, and calls for an automated mechanism that can both run quickly and provide accurate settings. In this paper, we propose an efficient discrete combinatorial optimization technique that makes two unique contributions: (a) an improved and extended metaheuristic that exploits the application domain knowledge for fast convergence, and (b) the development and quantification of a discrete version of the classical tunneling mechanism to improve the accuracy of the solution. Our extensive evaluation using available workload traces that do include configuration information shows that the proposed technique can provide a lower-cost solution (by ~60%) with faster convergence (by ~48%) as compared to the traditional metaheuristic algorithms. Also, our solution succeeds in finding a feasible solution in approximately 30% more cases than the baseline algorithm.
more »
« less
- Award ID(s):
- 2011252
- PAR ID:
- 10419598
- Date Published:
- Journal Name:
- IEEE Cloud
- Page Range / eLocation ID:
- 511 to 521
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Many societal decision problems lie in high-dimensional continuous spaces not amenable to the voting techniques common for their discrete or single-dimensional counterparts. These problems are typically discretized before running an election or decided upon through negotiation by representatives. We propose a meta-algorithm called Iterative Local Voting for collective decision-making in this setting, in which voters are sequentially sampled and asked to modify a candidate solution within some local neighborhood of its current value, as defined by a ball in some chosen norm. In general, such schemes do not converge, or, when they do, the resulting solution does not have a natural description. We first prove the convergence of this algorithm under appropriate choices of neighborhoods to plausible solutions in certain natural settings: when the voters' utilities can be expressed in terms of some form of distance from their ideal solution, and when these utilities are additively decomposable across dimensions. In many of these cases, we obtain convergence to the societal welfare maximizing solution. We then describe an experiment in which we test our algorithm for the decision of the U.S. Federal Budget on Mechanical Turk with over 4,000 workers, employing neighborhoods defined by §L1, §L2 and §L∞ balls. We make several observations that inform future implementations of such a procedure.more » « less
-
The framework of Integral Quadratic Constraints (IQC) introduced by Lessard et al. (2014) reduces the com- putation of upper bounds on the convergence rate of several optimization algorithms to semi-definite programming (SDP). In particular, this technique was applied to Nesterov’s accelerated method (NAM). For quadratic functions, this SDP was explicitly solved leading to a new bound on the convergence rate of NAM, and for arbitrary strongly convex functions it was shown numerically that IQC can improve bounds from Nesterov (2004). Unfortunately, an explicit analytic solution to the SDP was not provided. In this paper, we provide such an analytical solution, obtaining a new general and explicit upper bound on the convergence rate of NAM, which we further optimize over its parameters. To the best of our knowledge, this is the best, and explicit, upper bound on the convergence rate of NAM for strongly convex functions.more » « less
-
The framework of Integral Quadratic Constraints (IQC) introduced by Lessard et al. (2014) reduces the com- putation of upper bounds on the convergence rate of several optimization algorithms to semi-definite programming (SDP). In particular, this technique was applied to Nesterov’s accelerated method (NAM). For quadratic functions, this SDP was explicitly solved leading to a new bound on the convergence rate of NAM, and for arbitrary strongly convex functions it was shown numerically that IQC can improve bounds from Nesterov (2004). Unfortunately, an explicit analytic solution to the SDP was not provided. In this paper, we provide such an analytical solution, obtaining a new general and explicit upper bound on the convergence rate of NAM, which we further optimize over its parameters. To the best of our knowledge, this is the best, and explicit, upper bound on the convergence rate of NAM for strongly convex functions.more » « less
-
Abstract Stein’s method is used to study discrete representations of multidimensional distributions that arise as approximations of states of quantum harmonic oscillators. These representations model how quantum effects result from the interaction of finitely many classical ‘worlds’, with the role of sample size played by the number of worlds. Each approximation arises as the ground state of a Hamiltonian involving a particular interworld potential function. Our approach, framed in terms of spherical coordinates, provides the rate of convergence of the discrete approximation to the ground state in terms of Wasserstein distance. Applying a novel Stein’s method technique to the radial component of the ground state solution, the fastest rate of convergence to the ground state is found to occur in three dimensions.more » « less
An official website of the United States government

