skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Spreading dynamics of a droplet impacting a sphere
In nature, high-speed rain drops often impact and spread on curved surfaces, e.g., leaves and animal bodies. Although a drop's impact on a surface is a traditional topic for industrial applications, drop-impact dynamics on curved surfaces are less known. In the present study, we examine the time-dependent spreading dynamics of a drop onto a curved hydrophobic surface. We also observed that a drop on a curved surface spreads farther than one on a flat surface. To further understand the spreading dynamics, a new analytical model is developed based on volume conservation and temporal energy balance. This model converges to previous models at the early stage and the final stage of droplet impact. We compared the new model with measured spreading lengths on various curved surfaces and impact speeds, which resulted in good agreement.  more » « less
Award ID(s):
2120739
PAR ID:
10419626
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Physics of Fluids
Volume:
34
Issue:
10
ISSN:
1070-6631
Page Range / eLocation ID:
102115
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Impacting drops are ubiquitous and the corresponding impact force is their most studied dynamic quantity. However, impact forces arising from collisions with curved surfaces are understudied. In this study, we impact small cups with falling drops across drop Reynolds number 2975–12 800, isolating five dominant parameters influencing impact force: drop height and diameter, surface curvature and wettability, and impact eccentricity. These parameters are effectively continuous in their domain and have stochastic variability. The unpredictable dynamics of the system incentivize the implementation of tools that can unearth relationships between parameters and make predictions about impact force for parameter values for which there is not explicit experimental data. We predict force due to the impacting drop in a concave target using an ensemble learning algorithm comprised of four base algorithms: a random forest regressor, k-nearest neighbor, a gradient boosting regressor, and a multi-layer perceptron. We train and test our algorithm with original experimental data comprising 387 total trials using four cup radii with two wetting conditions each. Our approach permits the determination of relative importance of the input features in producing impact force and force predictions which can be compared to scaling relations modified from those for flat targets. Algorithmic predictions indicate that deformation of the drop and surface wettability, often neglected in scaling for impact force on flat surfaces, are important for concave targets. Finally, our approach provides another opportunity for the application of machine learning to characterize complex systems' fluid mechanics for which experimental variables are numerous and vary independently. 
    more » « less
  2. A large number of powerful, high-quality, and open-source simulation packages exist to efficiently perform molecular dynamics simulations, and their prevalence has greatly accelerated discoveries across a wide range of scientific domains. These packages typically simulate particles in flat (Euclidean) space, with options to specify a variety of boundary conditions. While more exotic, many physical systems are constrained to and interact across curved surfaces, such as organisms moving across the landscape, colloids pinned at curved fluid-fluid interfaces, and layers of epithelial cells forming highly curved tissues. The calculation of distances and the updating of equations of motion in idealized geometries (namely, on surfaces of constant curvature) can be done analytically, but it is much more challenging to efficiently perform molecular-dynamics-like simulations on arbitrarily curved surfaces. This article discusses a simulation framework which combines tools from particle-based simulations with recent work in discrete differential geometry to model particles that interact via geodesic distances and move on an arbitrarily curved surface. We present computational cost estimates for a variety of surface complexities with and without various algorithmic specializations (e.g., restrictions to short-range interaction potentials, or multi-threaded parallelization). Our flexible and extensible framework is set up to easily handle both equilibrium and non-equilibrium dynamics, and will enable researchers to access time- and particle-number-scales previously inaccessible. 
    more » « less
  3. This experimental work builds on our previous studies on the post-impact characteristics of drops striking three-dimensional-printed fiber arrays by investigating the highly transient characteristics of impact. We measure temporal changes in drop penetration depth, lateral spreading, and drop dome height above the fiber array as the drop impacts. Liquid penetration of vertical fibers may be divided into three sequential periods with linearly approximated rates of penetration: (i) an inertial regime, where penetration dynamics are governed by inertia; (ii) a transitional regime exhibiting inertial and capillary action; and (iii) a capillary regime characterized purely by downward wicking. Horizontal fibers exhibit only the inertial and transitional stages, with wicking only observed horizontally along the direction of fibers. In horizontal hydrophilic fiber arrays, the time duration to reach the maximum lateral deformation of the drop is proportional to We1/4, as observed in drops impacting solid surfaces. There exists a critical Weber number below which the drop shows no radial deformation, and the critical value increases with decreasing fiber density. At large Weber numbers, drops splash. In contrast, vertical fibers restrict the lateral spreading of the drop, thereby suppressing a splash for all tested drop velocities, even those exceeding 5 m/s. 
    more » « less
  4. Droplet impacts on solid surfaces produce a wide variety of phenomena such as spreading, splashing, jetting, receding, and rebounding. In microholed surfaces, downward jets through the hole can be caused by the high impact inertia during the spreading phase of the droplet over the substrate as well as the cavity collapse during recoil phase of the droplet. We investigate the dynamics of the jet formed through the single hole during the impacting phase of the droplet on a micro-holed hydrophilic substrate. The sub-millimeter circular holes are created on the 0.2 mm-thickness hydrophilic plastic films using a 0.5 mm punch. Great care has been taken to ensure that the millimeter-sized droplets of water dispensed by a syringe pump through a micropipette tip can impact directly over the micro-holes. A high-speed video photography camera is employed to capture the full event of impacting and jetting. A MATLAB code has been developed to process the captured videos for data analysis. We study the effect of impact velocity on the jet formation including jet velocity, ejected droplet volume, and breakup process. We find that the Weber number significantly affects outcomes of the drop impact and jetting mechanism. We also examine the dynamic contact angle of the contact line during the spreading and the receding phase. 
    more » « less
  5. Dynamic variables of drop impact such as force, drag, pressure, and stress distributions are key to understanding a wide range of natural and industrial processes. While the study of drop impact kinematics has been in constant progress for decades thanks to high-speed photography and computational fluid dynamics, research on drop impact dynamics has only peaked in the last 10 years. Here, we review how recent coordinated efforts of experiments, simulations, and theories have led to new insights on drop impact dynamics. Particularly, we consider the temporal evolution of the impact force in the early- and late-impact regimes, as well as spatiotemporal features of the pressure and shear-stress distributions on solid surfaces. We also discuss other factors, including the presence of water layers, air cushioning, and nonspherical drop geometry, and briefly review granular impact cratering by liquid drops as an example demonstrating the distinct consequences of the stress distributions of drop impact. 
    more » « less