skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Effect of Negative Poisson's Ratio on the Tensile Properties of Auxetic CFRP Composites
Carbon fiber reinforced polymer (CFRP) matrix composites have become increasingly popular across industries such as aerospace and automotive industries due to its outstanding mechanical properties and significant weight saving capability. CFRP composites are also widely known to be highly tailorable. For instance, different laminate-level mechanical properties for CFRP composites can be achieved by varying the individual carbon fiber laminar arrangements, among one of them is the Poisson’s ratio. Conventional materials have a positive Poisson’s ratio (PPR), visualize any conventional materials in a 2D block shape, when stretching that material in longitudinal direction, contraction follows on the transverse direction, whereas for materials with a negative Poisson’s ratio (NPR), stretching in the longitudinal direction leads to expansion in the transverse direction. Materials with NPRs have been shown to improve the indentation and impact resistances, when compared to equivalent materials with PPRs. However, producing NPRs could potentially compromise other properties, such as tensile properties, which has not been reported. The current work investigates the effects of NPR on the tensile properties of CFRP composites. Specifically, a laminatelevel NPR of -0.4094 in the in-plane direction is achieved through ply arrangement of CFRP composites using classical lamination theory (CLT). The non-auxetic counterpart CFRP composites are designed to produce an PPR of 0.1598 in the in-plane direction while simultaneously match their elastic moduli in three directions with those of the auxetic composites. Results show that the predicted tensile modulus and in-plane Poisson’s ratio were in excellent agreement with the experiment results. It was found that the ultimate tensile strength and failure strain or ductility of auxetic specimens were on average 40% lower than those of the conventional CFRP composites.  more » « less
Award ID(s):
2202737
PAR ID:
10419976
Author(s) / Creator(s):
;
Date Published:
Journal Name:
37th American Society for Composites (ASC) Technical Conference
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Introducing auxeticity or negative Poisson’s ratio is one potential solution to mitigate the low velocity impact damage of fiber reinforced polymer matrix composites, which can be achieved by tailoring the layup of an anisotropic composite laminate. This study aims to investigate the effect of laminate-level in-plane negative Poisson’s ratio on the low velocity impact behavior of carbon fiber reinforced polymer (CFRP) matrix composites using numerical simulations. The layups of the auxetic composites that allow them to produce negative Poisson’s ratios are identified based on the Classical Lamination Theory and verified through fundamental coupon-level experimental tests. To ensure meaningful comparisons, the non-auxetic counterpart composites are designed by allowing them to produce positive in-plane Poisson’s ratio while closely matching the longitudinal effective modulus of the auxetic laminate. The simulation results indicate that the auxetic laminates suffer smaller (12.6% on average) delamination area in top and bottom interfaces, much smaller (38% on average) matrix compressive damage in the top and bottom plies, and smaller (14.6% on average) fiber tensile damage area in each ply of the laminate at relatively higher impact energies (5 and 8 J). 
    more » « less
  2. Abstract Mechanical metamaterials with negative Poisson’s ratio (NPR) have emerged as a novel class of engineering material, and have attracted increasing attention in various engineering sectors. Most studies available on the buckling problem of laminated plates with positive or NPR are those under uniaxial compression. Here, we report that the buckling phenomenon may occur for auxetic nanocomposite laminated plates under uniaxial tension when the unloaded edges of the plates are immovable. Two types of nanocomposites are considered, including graphene/Cu and carbon nanotube/Cu composites. Governing equations of the auxetic nanocomposite laminated plates are formulated based on the framework of Reddy’s higher-order shear deformation theory. In modeling, the von Kármán nonlinear strain–displacement relationship, temperature-dependent material properties, thermal effects, and the plate–substrate interaction are considered. The explicit analytical solutions for postbuckling of auxetic nanocomposite laminated plates subjected to uniaxial tension are obtained for the first time by employing a two-step perturbation approach. Numerical investigations are performed for tension buckling and postbuckling behaviors of auxetic nanocomposite laminated rectangular plates with in-plane NPR rested on an elastic substrate under temperature environments. 
    more » « less
  3. Abstract Auxetic materials showing a negative Poisson’s ratio can offer unusual sensing capabilities due to drastic percolation changes. This study presents the capacitive response of wet-fractured carbon nanotube paper composites in exposure to humidity. A strained composite strip is fractured to produce numerous cantilevers consisting of cellulose fibers coated with carbon nanotubes. During stretching, the thin composite buckles in the out-of-plane direction, which causes auxetic behavior to generate the radially structured electrodes. The crossbar junctions forming among the fractured electrodes significantly increase capacitance and its response to humidity as a function of sensor widths. The molecular junctions switch electric characteristics between predominantly resistive- and capacitive elements. The resulting capacitive response is characterized for humidity sensing without the need for an additional absorption medium. The normalized capacitance change (ΔC/C 0 ) exhibits a sensitivity of 0.225 within the range of 40 ∼ 80% relative humidity. The novel auxetic behavior of a water-printed paper-based nanocomposite paves the way for inexpensive humidity and sweat sensors. 
    more » « less
  4. This research focused on testing the effect of the negative Poisson’s ratio of a carbon fiber composite on its critical buckling load. A secondary goal was to determine the accuracy of simulation compared to the experimental results for carbon fiber composites. In order to accomplish these two goals, both simulation and experimental testing were employed. For the simulation, ABAQUS software was used to determine predicted values for the critical buckling loads of auxetic and nonauxetic composites as well as the respective nonlinear force behavior of these composites. These results were then compared to experimental results of four auxetic and four non-auxetic specimens each experiencing uniaxial compressive tests. The results of simulation and experimentation showed that the critical buckling loads, and force sustained in general, of the auxetic composites were about three times higher than those of non-auxetic composites. While it appears that the negative Poisson’s ratio has a significant impact on the buckling strength of composite materials, further testing is required to determine the effects of other factors on the critical buckling loads. Along with this, the simulation was more accurate for the auxetic composites than for the non-auxetic composites. Therefore, further testing and simulation are required to determine the limits of simulation accuracy for composite structures. 
    more » « less
  5. Auxetic materials are those that exhibit negative Poisson’s ratios. Such a unique property was shown to improve the indentation and impact resistances. Angle-ply composite laminates can be designed to produce negative Poisson’s ratio at the laminate level due to the large anisotropicity of the individual layer and the strain mismatch between adjacent layers. This paper investigates the effect of through-thickness negative Poisson’s ratio on the low velocity impact behaviors of carbon fiber reinforced polymer matrix composite laminates, including the global impact behaviors, as well as the delamination, and the fiber and matrix damage. Results from numerical investigations show consistently reduced fiber and matrix tensile damage in the auxetic laminate in all plies, in comparison to the non-auxetic counterpart laminates (up to 40% on average). However, the auxetic laminate does not present a clear advantage on mitigating the delamination damage or the matrix compressive damage. 
    more » « less