Nature-Inspired Design of Nano-Architecture-Aligned Ni 5 P 4 -Ni 2 P/NiS Arrays for Enhanced Electrocatalytic Activity of Hydrogen Evolution Reaction (HER)
- Award ID(s):
- 1827745
- PAR ID:
- 10420068
- Date Published:
- Journal Name:
- ACS Applied Materials & Interfaces
- Volume:
- 15
- Issue:
- 18
- ISSN:
- 1944-8244
- Page Range / eLocation ID:
- 22036 to 22050
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Addition of sub‐stoichiometric quantities of PEt3and diphenyl disulfide to a solution of [Ni(1,5‐cod)2] generates a mixture of [Ni3(SPh)4(PEt3)3] (1), unreacted [Ni(1,5‐cod)2], and [(1,5‐cod)Ni(PEt3)2], according to1H and31P{1H} NMR spectroscopic monitoring of the in situ reaction mixture. On standing, complex1converts into [Ni4(S)(Ph)(SPh)3(PEt3)3] (2), via formal addition of a “Ni(0)” equivalent, coupled with a CS oxidative addition step, which simultaneously generates the Ni‐bound phenyl ligand and the μ3‐sulfide ligand. Upon gentle heating, complex2converts into a mixture of [Ni5(S)2(SPh)2(PEt3)5] (3) and [Ni8(S)5(PEt3)7] (4), via further addition of “Ni(0)” equivalents, in combination with a series of C–S oxidative addition and CC reductive elimination steps, which serve to convert thiophenolate ligands into sulfide ligands and biphenyl. The presence of1–4in the reaction mixture is confirmed by their independent syntheses and subsequent spectroscopic characterization. Overall, this work provides an unprecedented level of detail of the early stages of Ni nanocluster growth and highlights the fundamental reaction steps (i.e., metal atom addition, CS oxidative addition, and CC reductive elimination) that are required to grow an individual cluster.more » « less
-
Abstract Self‐sustaining photocatalytic NO3−reduction systems could become ideal NO3−removal methods. Developing an efficient, highly active photocatalyst is the key to the photocatalytic reduction of NO3−. In this work, we present the synthesis of Ni2P‐modified Ta3N5(Ni2P/Ta3N5), TaON (Ni2P/TaON), and TiO2(Ni2P/TiO2). Starting with a 2 mM (28 g/mL NO3−−N) aqueous solution of NO3−, as made Ni2P/Ta3N5and Ni2P/TaON display as high as 79% and 61% NO3−conversion under 419 nm light within 12 h, which correspond to reaction rates per gram of 196 μmol g−1 h−1and 153 μmol g−1 h−1, respectively, and apparent quantum yields of 3–4%. Compared to 24% NO3−conversion in Ni2P/TiO2, Ni2P/Ta3N5and Ni2P/TaON exhibit higher activities due to the visible light active semiconductor (SC) substrates Ta3N5and TaON. We also discuss two possible electron migration pathways in Ni2P/semiconductor heterostructures. Our experimental results suggest one dominant electron migration pathway in these materials, namely: Photo‐generated electrons migrate from the semiconductor to co‐catalyst Ni2P, and upshift its Fermi level. The higher Fermi level provides greater driving force and allows NO3−reduction to occur on the Ni2P surface.more » « less
-
Electrocatalytic water splitting presents an exciting opportunity to produce environmentally benign hydrogen fuel to power human activities. Earth abundant Ni5P4 has emerged as an efficient catalyst for the hydrogen evolution reaction (HER) and its activity can be enhanced by admixing synergistic metals to modify the surface affinity and consequently kinetics of HER. Computational studies suggest that the HER activity of Ni5P4 can be improved by Zn doping, causing a chemical pressure-like effect on Ni3 hollow sites. Herein, we report a facile colloidal route to produce Ni5-xZnxP4 nanocrystals (NCs) with control over structure, morphology, and composition and investigate their composition-dependent HER activity in alkaline solutions. Ni5-xZnxP4 NCs retain the hexagonal structure and solid spherical morphology of binary Ni5P4 NCs with a notable size increase from 9.2-28.5 nm for x = 0.00-1.27 compositions. Elemental maps affirm the homogeneous ternary alloy formation with no evidence of Zn segregation. Surface analysis of Ni5-xZnxP4 NCs indicates significant modulation of the surface polarization upon Zn incorporation resulting in a decrease in Niδ+ and an increase in Pδ- charge. Although all compositions followed a Volmer-Heyrovsky HER mechanism, the modulated surface polarization enhances the reaction kinetics producing lower Tafel slopes for Ni5-xZnxP4 NCs (82.5-101.9 mV/dec for x = 0.10-0.84) compared to binary Ni5P4 NCs (109.9 mV/dec). Ni5-xZnxP4 NCs showed higher HER activity with overpotentials of 131.6-193.8 mV for x = 0.02-0.84 in comparison to Ni5P4 NCs (218.1 mV) at a current density of -10 mA/cm2. Alloying with Zn increases the material’s stability with only a ~10% increase in overpotential for Ni4.49Zn0.51P4 NCs at -50 mA/cm2, whereas a ~33% increase was observed for Ni5P4 NCs. At current densities above -40 mA/cm2, bimetallic NCs with x = 0.10, 0.29, and 0.51 compositions outperformed the benchmark Pt/C catalyst, suggesting that hexagonal alloyed Ni5-xZnxP4 NCs are excellent candidates for practical applications that necessitate lower HER overpotentials at higher current densities.more » « less
An official website of the United States government

