This tutorial deals initially with a comparison of the mechanistic aspects of living and immortal polymerization processes. The living polymerization pathway originated with the anionic polymerization of styrene by Szwarc, whereas immortal polymerization was first described by Inoue for the homopolymerization of epoxides using an aluminum complex. A similar behavior would be anticipated for the copolymerization of epoxides and carbon dioxide catalyzed by well-defined metal complexes. The major difference between these two pathways is rapid and reversible chain transfer reactions involving protic impurities or additives in the latter case, that is, the stoichiometry of the monomer/initiator ratio changes as a function of the nature and concentration of the chain transfer agent (CTA). For instance, in early studies of the copolymerization of epoxides and CO 2 where adventitious water was present in the copolymerization reactions, there was little control of the molecular weight of the resulting copolymer product. Presently, the presence of chain transfer with protic CTAs during the copolymerization of epoxides and CO 2 is a major positive factor in this process's commercialization. Specifically, this represents an efficient production of polyols for the synthesis of CO 2 -based polyurethanes. Studies of the use of various CTAs in the synthesis of designer polymeric materials from CO 2 and epoxides are summarized herein.
more »
« less
Radical ring-opening polymerization of sustainably-derived thionoisochromanone
We present the synthesis, characterization and radical ring-opening polymerization (rROP) capabilities of thionoisochromanone (TIC), a fungi-derivable thionolactone. TIC is the first reported six-membered thionolactone to readily homopolymerize under free radical conditions without the presence of a dormant comonomer or repeated initiation. Even more, the resulting polymer is fully degradable under mild, basic conditions. Computations providing molecular-level insights into the mechanistic and energetic details of polymerization identified a unique S , S , O -orthoester intermediate that leads to a sustained chain-end. This sustained chain-end allowed for the synthesis of a block copolymer of TIC and styrene under entirely free radical conditions without explicit radical control methods such as reversible addition–fragmentation chain transfer polymerization (RAFT). We also report the statistical copolymerization of ring-retained TIC and styrene, confirmed by elemental analysis and energy-dispersive X-ray spectroscopy (EDX). Computations into the energetic details of copolymerization indicate kinetic drivers for ring-retaining behavior. This work provides the first example of a sustainable feedstock for rROP and provides the field with the first six-membered monomer susceptible to rROP, expanding the monomer scope to aid our fundamental understanding of thionolactone rROP behavior.
more »
« less
- PAR ID:
- 10420365
- Date Published:
- Journal Name:
- Chemical Science
- Volume:
- 14
- Issue:
- 21
- ISSN:
- 2041-6520
- Page Range / eLocation ID:
- 5689 to 5698
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Low‐strain cyclic olefin monomers, including five‐membered, six‐membered, eight‐membered, and macrocyclic rings, have been recently exploited for the synthesis of depolymerizable polyolefins via ring‐opening metathesis polymerization (ROMP). Such polyolefins can undergo ring‐closing metathesis depolymerization (RCMD) to regenerate their original monomers. Nevertheless, the depolymerization behavior of polyolefins prepared by ROMP of seven‐membered cyclic olefins, an important class of low‐strain rings, still remains unexplored. In this study, we demonstrate the chemical recycling of polyheptenamers to cycloheptene under standard RCMD conditions. Highly efficient depolymerization of polyheptenamer was enabled by Grubbs' second‐generation catalyst in toluene. It was observed that the monomer yields increased when the depolymerization temperature increased and the starting polymer concentration was reduced. A near‐quantitative monomer regeneration (>96%) was achieved within 1 h under dilute conditions (20 mM of olefins) at 60°C. Moreover, polyheptenamer exhibited a decomposition temperature above 430°C, highlighting its potential as a new class of thermally stable and chemically recyclable polymer materials.more » « less
-
Chemically Recyclable, High Molar Mass Polyoxazolidinones via Ring-Opening Metathesis PolymerizationThe development of robust methods for the synthesis of chemically recyclable polymers with tunable properties is necessary for the design of next-generation materials. Polyoxazolidinones (POxa), polymers with five-membered urethanes in their backbones, are an attractive target because they are strongly polar and have high thermal stability, but existing step-growth syntheses limit molar masses and methods to chemically recycle POxa to monomer are rare. Herein, we report the synthesis of high molar mass POxa via ring-opening metathesis polymerization of oxazolidinone-fused cyclooctenes. These novel polymers show <5% mass loss up to 382–411 °C and have tunable glass transition temperatures (14–48 °C) controlled by the side chain structure. We demonstrate facile chemical recycling to monomer and repolymerization despite moderately high monomer ring-strain energies, which we hypothesize are facilitated by the conformational restriction introduced by the fused oxazolidinone ring. This method represents the first chain growth synthesis of POxa and provides a versatile platform for the study and application of this emerging subclass of polyurethanes.more » « less
-
Abstract An orthogonal combination of cationic and radical RAFT polymerizations is used to synthesize bottlebrush polymers using two distinct RAFT agents. Selective consumption of the first RAFT agent is used to control the cationic RAFT polymerization of a vinyl ether monomer bearing a secondary dormant RAFT agent, which subsequently allows side‐chain polymers to be grafted from the pendant RAFT agent by a radical‐mediated RAFT polymerization of a different monomer, thus completing the synthesis of bottlebrush polymers. The high efficiency and selectivity of the cationic and radical RAFT polymerizations allow both polymerizations to be conducted in one‐pot tandem without intermediate purification.more » « less
-
The industrial synthesis of functional polyolefins relies on free radical polymerization, which requires high temperature and pressure and offers poor microstructure control. Herein, we report a cation-switching strategy to access ethylene and alkyl acrylate copolymers with made-to-order molecular weight, molecular weight distribution, and polar monomer density, tunable within a catalyst-dependent range. This precision was achieved by exploiting the cation exchange dynamics between M+ and M′+ (where M+, M′+ = Li+, Na+, K+, or Cs+, and M ≠ M′) with our nickel phenoxyphosphine-polyethylene glycol catalyst. Under non-switching conditions, copolymerization of ethylene and methyl acrylate (MA) using our nickel catalyst in the presence of M+ and M′+ salts afforded ethylene-MA copolymers (EMA) with adjustable molecular weight distributions based on the ratio of M+ : M′+ employed. Under dynamic cation switching conditions, this catalyst system yielded monomodal EMA with molecular weight and MA incorporation that can be varied independently. Studies of the EMA revealed that while they retain the thermal and mechanical properties of polyethylene having the same molecular weight, increasing the MA per chain by as few as 1–3 units leads to measurable increase in their wettability and susceptibility toward oxidative cleavage. This work adds to a growing body of evidence suggesting that ethylene-based materials can be designed for improved degradability without compromising their performance.more » « less
An official website of the United States government

