skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chemically Recyclable, High Molar Mass Polyoxazolidinones via Ring-Opening Metathesis Polymerization
The development of robust methods for the synthesis of chemically recyclable polymers with tunable properties is necessary for the design of next-generation materials. Polyoxazolidinones (POxa), polymers with five-membered urethanes in their backbones, are an attractive target because they are strongly polar and have high thermal stability, but existing step-growth syntheses limit molar masses and methods to chemically recycle POxa to monomer are rare. Herein, we report the synthesis of high molar mass POxa via ring-opening metathesis polymerization of oxazolidinone-fused cyclooctenes. These novel polymers show <5% mass loss up to 382–411 °C and have tunable glass transition temperatures (14–48 °C) controlled by the side chain structure. We demonstrate facile chemical recycling to monomer and repolymerization despite moderately high monomer ring-strain energies, which we hypothesize are facilitated by the conformational restriction introduced by the fused oxazolidinone ring. This method represents the first chain growth synthesis of POxa and provides a versatile platform for the study and application of this emerging subclass of polyurethanes.  more » « less
Award ID(s):
1901635 2011401
PAR ID:
10501662
Author(s) / Creator(s):
; ;
Publisher / Repository:
ACS Publications
Date Published:
Journal Name:
ACS Macro Letters
ISSN:
2161-1653
Page Range / eLocation ID:
502 to 507
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract While depolymerizable polymers have been intensely pursued as a potential solution to address the challenges in polymer sustainability, most depolymerization systems are characterized by a low driving force in polymerization, which poses difficulties for accessing diverse functionalities and architectures of polymers. Here, we address this challenge by using a cyclooctene‐based depolymerization system, in which thecis‐to‐transalkene isomerization significantly increases the ring strain energy to enable living ring‐opening metathesis polymerization at monomer concentrations ≥0.025 M. An additionaltrans‐cyclobutane fused at the 5,6‐position of the cyclooctene reduces the ring strain energy of cyclooctene, enabling the corresponding polymers to depolymerize into thecis‐cyclooctene monomers. The use of excess triphenylphosphine was found to be essential to suppress secondary metathesis and depolymerization. The high‐driving‐force living polymerization of thetrans‐cyclobutane fusedtrans‐cyclooctene system holds promise for developing chemically recyclable polymers of a wide variety of polymer architectures. 
    more » « less
  2. The direct-growth technique was used to synthesize several macromonomers (MMs) employing reversible addition–fragmentation chain transfer (RAFT) polymerization by growing directly from a norbornene-functionalized chain transfer agent (CTA). We aimed to investigate the formation of bisnorbornenyl species resulting from radical termination by combination ( i.e. , coupling) during RAFT polymerization at different monomer conversion values in four types of monomers: styrene, tert -butyl acrylate, methyl methacrylate and N -acryloyl morpholine. Ring-opening metathesis polymerization (ROMP) of these MMs using Grubbs' 3rd generation catalyst (G3) at an MM : G3 ratio of 100 : 1 resulted in the formation of bottlebrush polymers. Analysis by size-exclusion chromatography (SEC) revealed high molar mass shoulders of varying intensities attributed to the incorporation of these bisnorbornenyl species to generate dimeric or higher-order bottlebrush polymer oligomers. The monomer type in the RAFT step heavily influenced the amount of these bottlebrush polymer dimers and oligomers, as did the monomer conversion value in the RAFT step: We found that the ROMP of polystyrene MMs with a target backbone degree of polymerization of 100 produced detectable coupling at ≥20% monomer conversion in the RAFT step, while it took ≥80% monomer conversion to observe coupling in the poly( tert -butyl acrylate) MMs. We did not detect coupling in the poly(methyl methacrylate) MMs, but broadening of the SEC peaks and an increase in dispersity occurred, suggesting the presence of metathesis-active alkene-containing chain ends created by disproportionation. Finally, poly( N -acryloyl morpholine) MMs, even when reaching 90% monomer conversion in the RAFT step, showed no detectable coupling in the bottlebrush polymers. These results highlight the importance of monomer choice and RAFT polymerization conditions in making MMs for ROMP grafting-through to make well-defined bottlebrush polymers. 
    more » « less
  3. ABSTRACT Carbohydrates are the fundamental building blocks of many natural polymers, their wide bioavailability, high chemical functionality, and stereochemical diversity make them attractive starting materials for the development of new synthetic polymers. In this work, one such carbohydrate,d‐glucopyranoside, was utilized to produce a hydrophobic five‐membered cyclic carbonate monomer to afford sugar‐based amphiphilic copolymers and block copolymers via organocatalyzed ring‐opening polymerizations with 4‐methylbenzyl alcohol and methoxy poly(ethylene glycol) as initiator and macroinitiator, respectively. To modulate the amphiphilicities of these polymers acidic benzylidene cleavage reactions were performed to deprotect the sugar repeat units and present hydrophilic hydroxyl side chain groups. Assembly of the polymers under aqueous conditions revealed interesting morphological differences, based on the polymer molar mass and repeat unit composition. The initial polymers, prior to the removal of the benzylidenes, underwent a morphological change from micelles to vesicles as the sugar block length was increased, causing a decrease in the hydrophilic–hydrophobic ratio. Deprotection of the sugar block increased the hydrophilicity and gave micellar morphologies. This tunable polymeric platform holds promise for the production of advanced materials for implementation in a diverse range of applications. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem.2019,57, 432–440 
    more » « less
  4. Alkaline anion exchange membranes (AAEMs) are an important component of alkaline exchange membrane fuel cells (AEMFCs), which facilitate the efficient conversion of fuels to electricity using nonplatinum electrode catalysts. However, low hydroxide conductivity and poor long-term alkaline stability of AAEMs are the major limitations for the widespread application of AEMFCs. In this paper, we report the synthesis of highly conductive and chemically stable AAEMs from the living polymerization oftrans-cyclooctenes. Atrans-cyclooctene–fused imidazolium monomer was designed and synthesized on gram scale. Using these highly ring-strained monomers, we produced a range of block and random copolymers. Surprisingly, AAEMs made from the random copolymer exhibited much higher conductivities than their block copolymer analogs. Investigation by transmission electron microscopy showed that the block copolymers had a disordered microphase segregation which likely impeded ion conduction. A cross-linked random copolymer demonstrated a high level of hydroxide conductivity (134 mS/cm at 80 °C). More importantly, the membranes exhibited excellent chemical stability due to the incorporation of highly alkaline-stable multisubstituted imidazolium cations. No chemical degradation was detected by1H NMR spectroscopy when the polymers were treated with 2 M KOH in CD3OH at 80 °C for 30 d. 
    more » « less
  5. Abstract Polyethylene (PE) is the most widely produced synthetic polymer. By installing chemically cleavable bonds into the backbone of PE, it is possible to produce chemically deconstructable PE derivatives; to date, however, such designs have primarily relied on carbonyl‐ and olefin‐related functional groups. Bifunctional silyl ethers (BSEs; SiR2(OR′2)) could expand the functional scope of PE mimics as they possess strong Si−O bonds and facile chemical tunability. Here, we report BSE‐containing high‐density polyethylene (HDPE)‐like materials synthesized through a one‐pot catalytic ring‐opening metathesis polymerization (ROMP) and hydrogenation sequence. The crystallinity of these materials can be adjusted by varying the BSE concentration or the steric bulk of the Si‐substituents, providing handles to control thermomechanical properties. Two methods for chemical recycling of HDPE mimics are introduced, including a circular approach that leverages acid‐catalyzed Si−O bond exchange with 1‐propanol. Additionally, despite the fact that the starting HDPE mimics were synthesized by chain‐growth polymerization (ROMP), we show that it is possible to recover the molar mass and dispersity of recycled HDPE products using step‐growth Si−O bond formation or exchange, generating high molecular weight recycled HDPE products with mechanical properties similar to commercial HDPE. 
    more » « less