skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Visualizing Interaction Networks and Evidence in Biomedical Corpora
The abundance of scientific articles published and indexed in publicly accessible repositories has spurred the research and development of automated information extraction systems. The output of such systems can be used to assemble large networks capturing the understanding of mechanistic pathways and their interactions as represented in the underlying body of research. We describe a system designed to help researchers search, visualize and interact with biological networks derived via information extraction tools. As input, the system takes a dataset of biological and biochemical interactions automatically generated by an information extraction system and provides an interface designed to search, visualize and interact with the data. The usage paradigm consists of identifying a starting point for a search, then using the data’s network structure by incrementally exploring the immediate neighborhood of the elements displayed by the system.  more » « less
Award ID(s):
2212130
PAR ID:
10420445
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
16th IEEE Pacific Visualization Symposium (PACIFICVIS)
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract One challenge in the teaching of immunology is the complexity of the subject. Immunology presents a long list of unique cells, signaling molecules, receptor-ligand interactions, regulatory mechanisms, developmental pathways, and outcomes that can feel burdensome to instructors and unapproachable to students. The beauty of this subject, however, is that these unique features interact in networks that parallel those in other biological fields. Visualizing the interactions between tissues, cells, and molecules of the immune system and their outcomes can promote immunological literacy and a broad understanding of biological systems. Cell Collective (cellcollective.org) is an open-access, approachable software system that allows students and researchers alike to build models and perform simulations of biological processes. Students can use this interactive platform to probe cell-cell interactions, signaling pathways, metabolic networks, etc. while building systems thinking and computational skills, which are critical for success in STEM fields. After building models, real-time simulations can be run to visualize and understand the dynamics of the biological system under conditions of environmental pressure, disease, mutation, etc. Instructors can assess student knowledge by building assessments into modules in a formative or summative manner. Because it is free, user-friendly, and offers a host of pre-built training, educational and experimental modules, Cell Collective is ideally suited for use in all types of educational settings. Supported by a grant from the NSF (RCN-UBE) 2120806 
    more » « less
  2. Understanding and characterizing how people interact in information-seeking conversations will be a crucial component in developing effective conversational search systems. In this paper, we introduce a new dataset designed for this purpose and use it to analyze information-seeking conversations by user intent distribution, co-occurrence, and flow patterns. The MSDialog dataset is a labeled conversation dataset of question answering (QA) interactions between information seekers and providers from an online forum on Microsoft products. The dataset contains more than 2,000 multi-turn QA dialogs with 10,000 utterances that are annotated with user intents on the utterance level. Annotations were done using crowdsourcing. With MSDialog, we find some highly recurring patterns in user intent during an information-seeking process. They could be useful for designing conversational search systems. We will make our dataset freely available to encourage exploration of information-seeking conversation models. 
    more » « less
  3. Molecular interaction networks are a vital tool for studying biological systems. While many tools exist that visualize a protein or a pathway within a network, no tool provides the ability for a researcher to consider a protein's position in a network in the context of a specific biological process or pathway. We developed ProteinWeaver, a web-based tool designed to visualize and analyze non-human protein interaction networks by integrating known biological functions. ProteinWeaver provides users with an intuitive interface to situate a user-specified protein in a user-provided biological context (as a Gene Ontology term) in five model organisms. ProteinWeaver also reports the presence of physical and regulatory network motifs within the queried subnetwork and statistics about the protein's distance to the biological process or pathway within the network. These insights can help researchers generate testable hypotheses about the protein's potential role in the process or pathway under study. Two cell biology case studies demonstrate ProteinWeaver's potential to generate hypotheses from the queried subnetworks. ProteinWeaver is available at https://proteinweaver.reedcompbio.org/. 
    more » « less
  4. Clifford Whitcomb (Ed.)
    Analyzing interactions between actors from a systems perspective yields valuable information about the overall system's form and function. When this is coupled with ecological modeling and analysis techniques, biological inspiration can also be applied to these systems. The diagnostic value of three metrics frequently used to study mutualistic biological ecosystems (nestedness, modularity, and connectance) is shown here using academic engineering makerspaces. Engineering students get hands‐on usage experience with tools for personal, class, and competition‐based projects in these spaces. COVID‐19 provides a unique study of university makerspaces, enabling the analysis of makerspace health through the known disturbance and resultant regulatory changes (implementation and return to normal operations). Nestedness, modularity, and connectance are shown to provide information on space functioning in a way that enables them to serve as heuristic diagnostics tools for system conditions. The makerspaces at two large R1 universities are analyzed across multiple semesters by modeling them as bipartite student‐tool interaction networks. The results visualize the predictive ability of these metrics, finding that the makerspaces tended to be structurally nested in any one semester, however when compared to a “normal” semester the restrictions are reflected via a higher modularity. The makerspace network case studies provide insight into the use and value of quantitative ecosystem structure and function indicators for monitoring similar human‐engineered interaction networks that are normally only tracked qualitatively. 
    more » « less
  5. null (Ed.)
    Synopsis Many biological systems across scales of size and complexity exhibit a time-varying complex network structure that emerges and self-organizes as a result of interactions with the environment. Network interactions optimize some intrinsic cost functions that are unknown and involve for example energy efficiency, robustness, resilience, and frailty. A wide range of networks exist in biology, from gene regulatory networks important for organismal development, protein interaction networks that govern physiology and metabolism, and neural networks that store and convey information to networks of microbes that form microbiomes within hosts, animal contact networks that underlie social systems, and networks of populations on the landscape connected by migration. Increasing availability of extensive (big) data is amplifying our ability to quantify biological networks. Similarly, theoretical methods that describe network structure and dynamics are being developed. Beyond static networks representing snapshots of biological systems, collections of longitudinal data series can help either at defining and characterizing network dynamics over time or analyzing the dynamics constrained to networked architectures. Moreover, due to interactions with the environment and other biological systems, a biological network may not be fully observable. Also, subnetworks may emerge and disappear as a result of the need for the biological system to cope with for example invaders or new information flows. The confluence of these developments renders tractable the question of how the structure of biological networks predicts and controls network dynamics. In particular, there may be structural features that result in homeostatic networks with specific higher-order statistics (e.g., multifractal spectrum), which maintain stability over time through robustness and/or resilience to perturbation. Alternative, plastic networks may respond to perturbation by (adaptive to catastrophic) shifts in structure. Here, we explore the opportunity for discovering universal laws connecting the structure of biological networks with their function, positioning them on the spectrum of time-evolving network structure, i.e. dynamics of networks, from highly stable to exquisitely sensitive to perturbation. If such general laws exist, they could transform our ability to predict the response of biological systems to perturbations—an increasingly urgent priority in the face of anthropogenic changes to the environment that affect life across the gamut of organizational scales. 
    more » « less