A theoretical framework for computing Auger spectra that include spin-orbit interaction is presented. The framework is based on the state-interaction approach using equation-of-motion coupled-cluster wave-functions. The working equations for Auger decay rates are derived within the Feshbach–Fano formalism. The capabilities of the theory are illustrated by the calculation of L-edge Auger spectra of H2S and Ar using the Feshbach–Fano and complex basis function (CBF) approaches. The quality of the Feshbach–Fano results depends critically on the treatment of the free-electron state. In contrast to the K-edge spectra for which both plane wave and Coulomb wave treatments yield reasonable results, the Feshbach–Fano calculations yield accurate results for L-edges only when using Coulomb wave (FF-CW). The FF-CW and CBF calculations of Auger spectra in H2S and Ar agree well with each other and with the available experimental data. The results highlight the importance of spin–orbit interactions for modeling L-edge Auger spectra.
more »
« less
The Auger spectrum of benzene
We present an ab initio computational study of the Auger electron spectrum of benzene. Auger electron spectroscopy exploits the Auger–Meitner effect, and although it is established as an analytic technique, the theoretical modeling of molecular Auger spectra from first principles remains challenging. Here, we use coupled-cluster theory and equation-of-motion coupled-cluster theory combined with two approaches to describe the decaying nature of core-ionized states: (i) Feshbach–Fano resonance theory and (ii) the method of complex basis functions. The spectra computed with these two approaches are in excellent agreement with each other and also agree well with experimental Auger spectra of benzene. The Auger spectrum of benzene features two well-resolved peaks at Auger electron energies above 260 eV, which correspond to final states with two electrons removed from the 1 e 1 g and 3 e 2 g highest occupied molecular orbitals. At lower Auger electron energies, the spectrum is less well resolved, and the peaks comprise multiple final states of the benzene dication. In line with theoretical considerations, singlet decay channels contribute more to the total Auger intensity than the corresponding triplet decay channels.
more »
« less
- PAR ID:
- 10420485
- Date Published:
- Journal Name:
- The Journal of Chemical Physics
- Volume:
- 158
- Issue:
- 6
- ISSN:
- 0021-9606
- Page Range / eLocation ID:
- 064109
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
States with core vacancies, which are commonly created by absorption of X-ray photons, can decay by a two-electron process in which one electron fills the core hole and the second one is ejected. These processes accompany many X-ray spectroscopies. Depending on the nature of the initial core-hole state and the decay valence-hole states, these processes are called Auger decay, intermolecular Coulomb decay, or electron-transfer-mediated decay. To connect many-body wavefunctions of the initial and final states with molecular orbital picture of the decay, we introduce a concept of natural Auger orbitals (NAOs). NAOs are obtained by two-step singular value decomposition of the two-body Dyson orbitals, reduced quantities that enter the expression of the decay rate in the Feshbach--Fano treatment. NAOs afford chemical insight and interpretation of the high-level ab intio calculations of Auger decay and related two-electron relaxation processes.more » « less
-
Abstract Inner-shell photoelectron spectroscopy provides an element-specific probe of molecular structure, as core-electron binding energies are sensitive to the chemical environment. Short-wavelength femtosecond light sources, such as Free-Electron Lasers (FELs), even enable time-resolved site-specific investigations of molecular photochemistry. Here, we study the ultraviolet photodissociation of the prototypical chiral molecule 1-iodo-2-methylbutane, probed by extreme-ultraviolet (XUV) pulses from the Free-electron LASer in Hamburg (FLASH) through the ultrafast evolution of the iodine 4d binding energy. Methodologically, we employ electron-ion partial covariance imaging as a technique to isolate otherwise elusive features in a two-dimensional photoelectron spectrum arising from different photofragmentation pathways. The experimental and theoretical results for the time-resolved electron spectra of the 4d 3/2 and 4d 5/2 atomic and molecular levels that are disentangled by this method provide a key step towards studying structural and chemical changes from a specific spectator site.more » « less
-
This study reports simulations of the lowest band in the electronic absorption spectrum of pyrazine carried out using a multi-state-multimode vibronic Hamiltonian parameterized using equation-of-motion coupled-cluster methods. The simulations explain the main spectral features and show how peaks of vibronic nature appear. The most complete vibronic model includes four electronic states and six vibrational modes. The simulations reveal that non-adiabatic coupling with bright states located as high as 3 eV above the studied state can lead to discernible features in the absorption spectrum. This study demonstrates the power of fully ab initio treatments of electronic and vibrational structure and their utility in understanding the mechanisms leading to complex molecular spectra.more » « less
-
We report a combined experimental and theoretical investigation of electron–molecule interactions using pyrrole as a model system. Experimental two-dimensional electron energy loss spectra (EELS) encode information about the vibrational states of the molecule as well as the position and structure of electronic resonances. The calculations using complex-valued extensions of equation-of-motion coupled-cluster theory (based on non-Hermitian quantum mechanics) facilitate the assignment of all major EELS features. We confirm the two previously described π resonances at about 2.5 and 3.5 eV (the calculations place these two states at 2.92 and 3.53 eV vertically and 2.63 and 3.27 eV adiabatically). The calculations also predict a low-lying resonance at 0.46 eV, which has a mixed character—of a dipole-bound state and σ* type. This resonance becomes stabilized at one quanta of the NH excitation, giving rise to the sharp feature at 0.9 eV in the corresponding EELS. Calculations of Franck–Condon factors explain the observed variations in the vibrational excitation patterns. The ability of theory to describe EELS provides a concrete illustration of the utility of non-Hermitian quantum chemistry, which extends such important concepts as potential energy surfaces and molecular orbitals to states embedded in the continuum.more » « less
An official website of the United States government

