skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: [3 + 2]-Cycloadditions with Porphyrin β,β′-Bonds: Theoretical Basis of the Counterintuitive meso -Aryl Group Influence on the Rates of Reaction
Award ID(s):
1800361
PAR ID:
10420561
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
The Journal of Organic Chemistry
Volume:
87
Issue:
24
ISSN:
0022-3263
Page Range / eLocation ID:
16473 to 16482
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. TheβPictoris system is the closest known stellar system with directly detected gas giant planets, an edge-on circumstellar disc, and evidence of falling sublimating bodies and transiting exocomets. The inner planet,βPictoris c, has also been indirectly detected with radial velocity (RV) measurements. The star is a knownδScuti pulsator, and the long-term stability of these pulsations opens up the possibility of indirectly detecting the gas giant planets through time delays of the pulsations due to a varying light travel time. We search for phase shifts in theδScuti pulsations consistent with the known planetsβPictoris b and c and carry out an analysis of the stellar pulsations ofβPictoris over a multi-year timescale. We used photometric data collected by the BRITE-Constellation, bRing, ASTEP, and TESS to derive a list of the strongest and most significantδScuti pulsations. We carried out an analysis with the open-source python package maelstrom to study the stability of the pulsation modes ofβPictoris in order to determine the long-term trends in the observed pulsations. We did not detect the expected signal forβPictoris b orβPictoris c. The expected time delay is 6 s forβPictoris c and 24 s forβPictoris b. With simulations, we determined that the photometric noise in all the combined data sets cannot reach the sensitivity needed to detect the expected timing drifts. An analysis of the pulsational modes ofβPictoris using maelstrom showed that the modes themselves drift on the timescale of a year, fundamentally limiting our ability to detect exoplanets aroundβPictoris via pulsation timing. 
    more » « less
  2. Abstract The CODEX-βapparatus is a demonstrator for the proposed future CODEX-b experiment, a long-lived-particle detector foreseen for operation at IP8 during HL-LHC data-taking. The demonstrator project, intended to collect data in 2025, is described, with a particular focus on the design, construction, and installation of the new apparatus. 
    more » « less
  3. Thin (40–150 nm), highly doped n+ (1019–1020 cm−3) Ga2O3 layers deposited using pulsed laser deposition (PLD) were incorporated into Ti/Au ohmic contacts on (001) and (010) β-Ga2O3 substrates with carrier concentrations between 2.5 and 5.1 × 1018 cm−3. Specific contact resistivity values were calculated for contact structures both without and with a PLD layer having different thicknesses up to 150 nm. With the exception of a 40 nm PLD layer on the (001) substrate, the specific contact resistivity values decreased with increasing PLD layer thickness: up to 8× on (001) Ga2O3 and up to 16× on (010) Ga2O3 compared with samples without a PLD layer. The lowest average specific contact resistivities were achieved with 150 nm PLD layers: 3.48 × 10−5 Ω cm2 on (001) Ga2O3 and 4.79 × 10−5 Ω cm2 on (010) Ga2O3. Cross-sectional transmission electron microscopy images revealed differences in the microstructure and morphology of the PLD layers on the different substrate orientations. This study describes a low-temperature process that could be used to reduce the contact resistance in Ga2O3 devices. 
    more » « less
  4. This study presents a comprehensive analysis of the etching effects on β-Ga2O3 using two methods: H2_N2 (a mixture of hydrogen and nitrogen) etching and triethylgallium (TEGa) in situ etching performed in a metal-organic chemical vapor deposition system. By employing a mix of H2 and N2 gases at varying chamber pressures and maintaining a constant etching temperature of 750 °C, we investigated the etching dynamics across three different β-Ga2O3 orientations: (010), (001), and (2¯01). Field emission scanning electron microscopy analysis showed that the etching behavior of β-Ga2O3 depends on the crystal orientation, with the (010) orientation showing notably uniform and smooth surfaces, indicating its suitability for vertical device applications. High-aspect-ratio β-Ga2O3 fin arrays were fabricated on (010) substrates using H2_N2 etching, yielding fin structures with widths of 2 μm and depths of 3.1 μm, along with smooth and well-defined sidewalls. The etching process achieved exceptionally high etch rates (>18 μm/h) with a strong dependence on pressure and sidewall orientation, revealing the trade-off between etch depth and surface smoothness. Separately, TEGa in situ etching was investigated as an alternative etching technique for both β-Ga2O3 and β-(AlxGa1−x)2O3 films. The results revealed that the (010) orientation exhibited relatively high etching rates while maintaining smoother sidewalls and top surfaces, making it favorable for device processing. In contrast, the (001) orientation showed strong resistance to TEGa etching. Furthermore, Al-incorporated β-(AlxGa1−x)2O3 films showed substantially lower etch rates compared to pure β-Ga2O3, suggesting their potential use as an effective etch-stop layer in advanced device fabrication. 
    more » « less