Abstract Changes from historic weather patterns have affected the phenology of many organisms world‐wide. Altered phenology can introduce organisms to novel abiotic conditions during growth and modify species interactions, both of which could drive changes in reproduction.We explored how climate change can alter plant reproduction using an experiment in which we manipulated the individual and combined effects of snowmelt timing and frost exposure, and measured subsequent effects on flowering phenology, peak flower density, frost damage, pollinator visitation and reproduction of four subalpine wildflowers. Additionally, we conducted a pollen‐supplementation experiment to test whether the plants in our snowmelt and frost treatments were pollen limited for reproduction. The four plants included species flowering in early spring to mid‐summer.The phenology of all four species was significantly advanced, and the bloom duration was longer in the plots from which we removed snow, but with species‐specific responses to snow removal and frost exposure in terms of frost damage, flower production, pollinator visitation and reproduction. The two early blooming species showed significant signs of frost damage in both early snowmelt and frost treatments, which negatively impacted reproduction for one of the species. Further, we recorded fewer pollinators during flowering for the earliest‐blooming species in the snow removal plots. We also found lower fruit and seed set for the early blooming species in the snow removal treatment, which could be attributed to the plants growing under unfavourable abiotic conditions. However, the later‐blooming species escaped frost damage even in the plots where snow was removed, and experienced increased pollinator visitation and reproduction.Synthesis.This study provides insight into how plant communities could become altered due to changes in abiotic conditions, and some of the mechanisms involved. While early blooming species may be at a disadvantage under climate change, species that bloom later in the season may benefit from early snowmelt, suggesting that climate change has the potential to reshape flowering communities. 
                        more » 
                        « less   
                    
                            
                            Complex climate‐mediated effects of urbanization on plant reproductive phenology and frost risk
                        
                    
    
            Summary Urbanization can affect the timing of plant reproduction (i.e. flowering and fruiting) and associated ecosystem processes. However, our knowledge of how plant phenology responds to urbanization and its associated environmental changes is limited.Herbaria represent an important, but underutilized source of data for investigating this question. We harnessed phenological data from herbarium specimens representing 200 plant species collected across 120 yr from the eastern US to investigate the spatiotemporal effects of urbanization on flowering and fruiting phenology and frost risk (i.e. time between the last frost date and flowering).Effects of urbanization on plant reproductive phenology varied significantly in direction and magnitude across species ranges. Increased urbanization led to earlier flowering in colder and wetter regions and delayed fruiting in regions with wetter spring conditions. Frost risk was elevated with increased urbanization in regions with colder and wetter spring conditions.Our study demonstrates that predictions of phenological change and its associated impacts must account for both climatic and human effects, which are context dependent and do not necessarily coincide. We must move beyond phenological models that only incorporate temperature variables and consider multiple environmental factors and their interactions when estimating plant phenology, especially at larger spatial and taxonomic scales. 
        more » 
        « less   
        
    
    
                            - PAR ID:
- 10420615
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- New Phytologist
- Volume:
- 239
- Issue:
- 6
- ISSN:
- 0028-646X
- Page Range / eLocation ID:
- p. 2153-2165
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract Despite a global footprint of shifts in flowering phenology in response to climate change, the reproductive consequences of these shifts are poorly understood. Furthermore, it is unknown whether altered flowering times affect plant population viability.We examine whether climate change‐induced earlier flowering has consequences for population persistence by incorporating reproductive losses from frost damage (a risk of early flowering) into population models of a subalpine sunflower (Helianthella quinquenervis). Using long‐term demographic data for three populations that span the species’ elevation range (8–15 years, depending on the population), we first examine how snowmelt date affects plant vital rates. To verify vital rate responses to snowmelt date experimentally, we manipulate snowmelt date with a snow removal experiment at one population. Finally, we construct stochastic population projection models and Life Table Response Experiments for each population.We find that populations decline (λs < 1) as snowmelt dates become earlier. Frost damage to flower buds, a consequence of climate change‐induced earlier flowering, does not contribute strongly to population declines. Instead, we find evidence that negative effects on survival, likely due to increased drought risk during longer growing seasons, drive projected population declines under earlier snowmelt dates.Synthesis.Shifts in flowering phenology are a conspicuous and important aspect of biological responses to climate change, but here we show that the phenology of reproductive events can be unreliable measures of threats to population persistence, even when earlier flowering is associated with substantial reproductive losses. Evidence for shifts in reproductive phenology, along with scarcer evidence that these shifts actually influence reproductive success, are valuable but can paint an incomplete and even misleading picture of plant population responses to climate change.more » « less
- 
            Abstract Flowering phenology can vary considerably even at fine spatial scales, potentially leading to temporal reproductive isolation among habitat patches. Climate change could alter flowering synchrony, and hence temporal isolation, if plants in different microhabitats vary in their phenological response to climate change. Despite the importance of temporal isolation in determining patterns of gene flow, and hence population genetic structure and local adaptation, little is known about how changes in climate affect temporal isolation within populations.Here, we use flowering phenology and floral abundance data of 50 subalpine plant species over 44 years to test whether temporal isolation between habitat patches is affected by spring temperature. For each species and year, we analysed temporal separation in peak flowering and flowering overlap between habitat patches separated by 5–950 m.Across our study species, warmer springs were associated with more temporal differentiation in flowering peaks among habitat patches, and less flowering overlap, increasing potential for temporal isolation within populations.Synthesis. By reducing opportunities for mating among plants in nearby habitat patches, our results suggest that warmer springs may reduce opportunities for gene flow within populations, and, consequently, the capacity of plant populations to adapt to environmental changes.more » « less
- 
            Summary Plant phenology, the timing of recurrent biological events, shows key and complex response to climate warming, with consequences for ecosystem functions and services. A key challenge for predicting plant phenology under future climates is to determine whether the phenological changes will persist with more intensive and long‐term warming.Here, we conducted a meta‐analysis of 103 experimental warming studies around the globe to investigate the responses of four phenophases – leaf‐out, first flowering, last flowering, and leaf coloring.We showed that warming advanced leaf‐out and flowering but delayed leaf coloring across herbaceous and woody plants. As the magnitude of warming increased, the response of most plant phenophases gradually leveled off for herbaceous plants, while phenology responded in proportion to warming in woody plants. We also found that the experimental effects of warming on plant phenology diminished over time across all phenophases. Specifically, the rate of changes in first flowering for herbaceous species, as well as leaf‐out and leaf coloring for woody species, decreased as the experimental duration extended.Together, these results suggest that the real‐world impact of global warming on plant phenology will diminish over time as temperatures continue to increase.more » « less
- 
            Abstract The temporal stability of plant productivity affects species' access to resources, exposure to stressors and strength of interactions with other species in the community, including support to the food web. The magnitude of temporal stability depends on how a species allocates resources among tissues and across phenological stages, such as vegetative growth versus reproduction. Understanding how plant phenological traits correlate with the long‐term stability of plant biomass is particularly important in highly variable ecosystems, such as drylands.We evaluated whether phenological traits predict the temporal stability of plant species productivity by correlating 18 years of monthly phenology observations with biannual estimates of above‐ground plant biomass for 98 plant species from semi‐arid drylands. We then paired these phenological traits with potential climate drivers to identify abiotic contexts that favour specific phenological strategies among plant species.Phenological traits predicted the stability of plant species above‐ground biomass. Plant species with longer vegetative phenophases not only had more stable biomass production over time but also failed to fruit in a greater proportion of years, indicating a growth–reproduction trade‐off. Earlier leaf‐out dates, longer fruiting duration and longer time lags between leaf and fruit production also predicted greater temporal stability.Species with stability‐promoting traits began greening in drier conditions than their unstable counterparts and experienced unexpectedly greater exposure to climate stress, indicated by the wider range of temperatures and precipitation experienced during biologically active periods.Our results suggest that bet‐hedging strategies that spread resource acquisition and reproduction over long time periods help to stabilize plant species productivity in variable environments, such as drylands. Read the freePlain Language Summaryfor this article on the Journal blog.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
