skip to main content


Title: The Most Effective Remote Forcing in Causing U.S.‐Wide Heat Extremes as Revealed by CESM Green's Function Experiments
Abstract

We make use of the Community Atmosphere Model version 5 Green's function q‐flux perturbation experiments to explore the most effective remote forcing in driving U.S.‐wide summer heat extremes. We find that positive q‐flux forcing over the western North Pacific Ocean is the most effective in causing an increased heat extreme frequency. This works by driving increased sea surface temperature and precipitation over western North Pacific and an eastward propagating Rossby wave train with an anomalous ridge over the contiguous U.S. In comparison, negative q‐flux forcing over the eastern tropical Pacific and its resulting surface cooling also leads to an increased heat extreme frequency but is less effective. Furthermore, guided by the Green's function results, we separate the role of western North Pacific warming and eastern tropical Pacific cooling in U.S. heat extremes in prescribed sea surface temperature experiments and ERA5 reanalysis data and find overall consistent conclusions.

 
more » « less
Award ID(s):
1934358
NSF-PAR ID:
10420658
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Geophysical Research Letters
Volume:
50
Issue:
11
ISSN:
0094-8276
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Previous studies linked the increase of the middle and low reaches of the Yangtze River (MLRYR) rainfall to tropical Indian Ocean warming during extreme El Niños’ (e.g., 1982/83 and 1997/98 extreme El Niños) decaying summer. This study finds the linkage to be different for the recent 2015/16 extreme El Niño’s decaying summer, during which the above-normal rainfalls over MLRYR and northern China are respectively linked to southeastern Indian Ocean warming and western tropical Indian Ocean cooling in sea surface temperatures (SSTs). The southeastern Indian Ocean warming helps to maintain the El Niño–induced anomalous lower-level anticyclone over the western North Pacific Ocean and southern China, which enhances moisture transport to increase rainfall over MLRYR. The western tropical Indian Ocean cooling first enhances the rainfall over central-northern India through a regional atmospheric circulation, the latent heating of which further excites a midlatitude Asian teleconnection pattern (part of circumglobal teleconnection) that results in an above-normal rainfall over northern China. The western tropical Indian Ocean cooling during the 2015/16 extreme El Niño is contributed by the increased upward latent heat flux anomalies associated with enhanced surface wind speeds, opposite to the earlier two extreme El Niños. 
    more » « less
  2. Abstract Despite substantial global mean warming, surface cooling has occurred in both the tropical eastern Pacific Ocean and the Southern Ocean over the past 40 years, influencing both regional climates and estimates of Earth’s climate sensitivity to rising greenhouse gases. While a tropical influence on the extratropics has been extensively studied in the literature, here we demonstrate that the teleconnection works in the other direction as well, with the southeast Pacific sector of the Southern Ocean exerting a strong influence on the tropical eastern Pacific. Using a slab ocean model, we find that the tropical Pacific sea surface temperature (SST) response to an imposed Southern Ocean surface heat flux forcing is sensitive to the longitudinal location of that forcing, suggesting an atmospheric pathway associated with regional dynamics rather than reflecting a zonal-mean energetic constraint. The transient response shows that an imposed Southern Ocean cooling in the southeast Pacific sector first propagates into the tropics by mean-wind advection. Once tropical Pacific SSTs are perturbed, they then drive remote changes to atmospheric circulation in the extratropics that further enhance both Southern Ocean and tropical cooling. These results suggest a mutually interactive two-way teleconnection between the Southern Ocean and tropical Pacific through atmospheric circulations, and highlight potential impacts on the tropics from the extratropical climate changes over the instrumental record and in the future. 
    more » « less
  3. null (Ed.)
    Abstract Skillful subseasonal prediction of extreme heat and precipitation greatly benefits multiple sectors, including water management, public health, and agriculture, in mitigating the impact of extreme events. A statistical model is developed to predict the weekly frequency of extreme warm days and 14-day standardized precipitation index (SPI) during boreal summer in the United States (US). We use a leading principal component of US soil moisture and an index based on the North Pacific sea surface temperature (SST) as predictors. The model outperforms the NCEP’s Climate Forecast System version 2 (CFSv2) at weeks 3-4 in the eastern US. It is found that the North Pacific SST anomalies persist several weeks and are associated with a persistent wave train pattern (WTZ500), which leads to increased occurrences of blocking and extreme temperature over the eastern US. Extreme dry soil moisture conditions persist into week 4 and are associated with an increase in sensible heat flux and decrease in latent heat flux, which may help maintain the overlying anticyclone. The clear sky conditions associated with blocking anticyclones further decrease soil moisture conditions and increase the frequency of extreme warm days. This skillful statistical model has the potential to aid in irrigation scheduling, crop planning, reservoir operation, and provide mitigation of impacts from extreme heat events. 
    more » « less
  4. The southeast Indian Ocean (SEIO) exhibits decadal variability in sea surface temperature (SST) with amplitudes of ~0.2–0.3 K and covaries with the central Pacific ( r = −0.63 with Niño-4 index for 1975–2010). In this study, the generation mechanisms of decadal SST variability are explored using an ocean general circulation model (OGCM), and its impact on atmosphere is evaluated using an atmospheric general circulation model (AGCM). OGCM experiments reveal that Pacific forcing through the Indonesian Throughflow explains <20% of the total SST variability, and the contribution of local wind stress is also small. These wind-forced anomalies mainly occur near the Western Australian coast. The majority of SST variability is attributed to surface heat fluxes. The reduced upward turbulent heat flux ( Q T ; latent plus sensible heat flux), owing to decreased wind speed and anomalous warm, moist air advection, is essential for the growth of warm SST anomalies (SSTAs). The warming causes reduction of low cloud cover that increases surface shortwave radiation (SWR) and further promotes the warming. However, the resultant high SST, along with the increased wind speed in the offshore area, enhances the upward Q T and begins to cool the ocean. Warm SSTAs co-occur with cyclonic low-level wind anomalies in the SEIO and enhanced rainfall over Indonesia and northwest Australia. AGCM experiments suggest that although the tropical Pacific SST has strong effects on the SEIO region through atmospheric teleconnection, the cyclonic winds and increased rainfall are mainly caused by the SEIO warming through local air–sea interactions. 
    more » « less
  5. Abstract The influence of eastern tropical Pacific (EPAC; 10°S–10°N, 140°–80°W) wind anomalies on El Niño is investigated using observations and model experiments. Extreme and moderate El Niños exhibit contrasting anomalous wind patterns in the EPAC during the peak and decay phases: westerly wind anomalies during extreme El Niño and southeasterly (southwesterly) wind anomalies south (north) of the equator during moderate El Niño. Experiments with an ocean general circulation model indicate that for extreme El Niño, the eastward intrusion of westerly wind anomalies contributes to the prolonged positive sea surface temperature (SST) anomalies in the eastern equatorial Pacific throughout boreal spring by weakened upwelling and horizontal advection. For moderate El Niño, by contrast, both the meridional and zonal anomalous winds over the EPAC are important in the rapid (slow) SST cooling south (north) of the equator through advection and wind–evaporation–SST feedback. Atmospheric model experiments confirm that these EPAC anomalous winds are primarily forced by tropical SST anomalies. The interplay between wind and SST anomalies suggests positive air–sea feedbacks over EPAC during the decay phase of El Niño. Ocean model results show that the frequency of extreme El Niño increases when EPAC wind anomalies are removed, suggesting the importance of EPAC winds for El Niño diversity. 
    more » « less