skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Jack‐of‐all‐trades paradigm meets long‐term data: Generalist herbivores are more widespread and locally less abundant
Abstract Insect herbivores are relatively specialized. Why this is so is not clear. We examine assumptions about associations between local abundance and dietary specialization using an 18‐year data set of caterpillar–plant interactions in Ecuador. Our data consist of caterpillar–plant associations and include standardized plot‐based samples and general collections of caterpillars, allowing for diet breadth and abundance estimates across spatial scales for 1917 morphospecies. We find that more specialized caterpillars are locally more abundant than generalists, consistent with a key component of the ‘jack of all trades, master of none’ hypothesis. As the diet breadth of species increased, generalists were not as abundant in any one location, but they had broader occupancy across the landscape, which is a pattern that could reflect high plant beta diversity and is consistent with an alternative neutral hypothesis. Our finding that more specialized species can be both rare and common highlights the ecological complexity of specialization.  more » « less
Award ID(s):
2133818
PAR ID:
10420693
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Ecology Letters
Volume:
25
Issue:
4
ISSN:
1461-023X
Page Range / eLocation ID:
p. 948-957
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Growing evidence suggests that organisms with narrow niche requirements are particularly disadvantaged in small habitat patches, typical of fragmented landscapes. However, the mechanisms behind this relationship remain unclear. Dietary specialists may be particularly constrained by the availability of their food resources as habitat area shrinks. For herbivorous insects, host plants may be filtered out of small habitat fragments by neutral sampling processes and deterministic plant community shifts due to altered microclimates, edge effects and browsing by ungulates.We examined the relationship between forest fragment area and the abundance of dietary‐specialist and dietary‐generalist larval Lepidoptera (caterpillars) and their host plants in the northeastern USA. We surveyed caterpillars and their host plants over 3 years in equal‐sized plots within 32 forest fragments varying in area between 3 and 1014 ha. We tested whether the abundances and species richness of dietary specialists increased more than those of dietary generalists with increasing fragment area and, if so, whether the difference could be explained by reduced host plant availability or increased browsing by white‐tailed deer (Odocoileus virginianus).The overall abundance of dietary specialists was positively related to fragment area; the relationship was substantially weaker for dietary generalists. There was notable variation among species within diet breadth groups, however. There was no effect of fragment area on the diversity of dietary‐specialist or dietary‐generalist caterpillars. Deer activity was not related to the abundances of either dietary‐generalist or dietary‐specialist caterpillars.Plant community composition was strongly associated with fragment area. Larger fragments were more likely to include host plants for both dietary‐specialist and dietary‐generalist caterpillars. Deer activity was correlated with decreased host plant availability for both groups, with a slightly stronger impact on host plants of dietary specialists. Although dietary specialists were more likely to lack host plants in fragments, the relationship between fragment area and host availability did not depend on caterpillar diet breadth.This study provides further evidence that decreasing patch area disproportionately impacts specialist consumers. Because this relationship was derived from equal‐sized plots, it is robust to some criticisms levelled at fragmentation research. The mechanisms for specialist consumer declines, however, remain elusive. 
    more » « less
  2. Abstract Most herbivorous insects are diet specialists in spite of the apparent advantages of being a generalist. This conundrum might be explained by fitness trade‐offs on alternative host plants, yet the evidence of such trade‐offs has been elusive. Another hypothesis is that specialization is nonadaptive, evolving through neutral population‐genetic processes and within the bounds of historical constraints. Here, we report on a striking lack of evidence for the adaptiveness of specificity in tropical canopy communities of armored scale insects. We find evidence of pervasive diet specialization, and find that host use is phylogenetically conservative, but also find that more‐specialized species occur on fewer of their potential hosts than do less‐specialized species, and are no more abundant where they do occur. Of course local communities might not reflect regional diversity patterns. But based on our samples, comprising hundreds of species of hosts and armored scale insects at two widely separated sites, more‐specialized species do not appear to outperform more generalist species. 
    more » « less
  3. ABSTRACT Most plant communities worldwide include exotic plants, which did not evolve with local organisms. The central goal of this study is to test if native organisms expanding their interactions to novel hosts are usually generalists or specialists. Here we studied new associations between hummingbirds, flower mites andMusa velutina(Musaceae), an exotic plant native to northeast India currently invading lowland forests in Costa Rica. Hummingbirds are pollinators, but flower mites feed on nectar without contributing to pollen transfer. Flower mites hitch rides on hummingbird beaks to colonize new flowers. To determine the original diet breadth of hummingbird and flower mite species, we assembled hummingbird and flower mite interactions at La Selva Biological Station. We identified four hummingbird species visitingMusa velutina. DNA barcode analyses identified only one species of flower mite colonizing flowers ofM. velutina. All new associations withM. velutinainvolved generalist hummingbird and flower mite species.Musa velutinadisplays both male and female flowers. Although flowers of both sexes were equally visited by hummingbirds, mites were 15 times more abundant in male than in female flowers. We hypothesize that this is the result of constant immigration coupled with mite population growth. Only half of the mites hitching rides on hummingbird beaks emigrate to newly opened flowers. Our results show thatM. velutinaintegration to a plant community occurs mainly by establishing interactions with generalists. 
    more » « less
  4. Abstract AimEcological niches shape species commonness and rarity, yet, the relative importance of different niche mechanisms within and across ecosystems remains unresolved. We tested the influence of niche breadth (range of environmental conditions where species occur) and niche position (marginality of a species’ environmental distribution relative to the mean environmental conditions of a region) on tree‐species abundance and occupancy across three biogeographic regions. LocationArgentinian Andes; Bolivian Amazon; Missouri Ozarks. Time period2002–2010. Major taxa studiedTrees. MethodsWe calculated abiotic‐niche breadths and abiotic‐niche positions using 16 climate, soil and topographic variables. For each region, we used model selection to test the relative influence of niche breadth and niche position on local abundance and occupancy in regional‐scale networks of 0.1‐ha forest plots. To account for species–environment associations caused by other mechanisms (e.g., dispersal), we used null models that randomized associations between species occurrences and environmental variables. ResultsWe found strong support for the niche‐position hypothesis. In all regions, species with higher local abundance and occupancy occurred in non‐marginal environments. Observed relationships between occupancy and niche position also differed from random species–environment associations in all regions. Surprisingly, we found little support for the niche‐breadth hypothesis. Observed relationships between both local abundance and niche breadth, and occupancy and niche breadth, did not differ from random species–environment associations. Main conclusionNiche position was more important than niche breadth in shaping species commonness and rarity across temperate, sub‐tropical and tropical forests. In all forests, tree species with widespread geographic distributions were associated with environmental conditions commonly found throughout the region, suggesting that niche position has similar effects on species occupancy across contrasting biogeographic regions. Our findings imply that conservation efforts aimed at protecting populations of common and rare tree species should prioritize conservation of both common and rare habitats. 
    more » « less
  5. Plant–insect interactions are common and important in basic and applied biology. Trait and genetic variation can affect the outcome and evolution of these interactions, but the relative contributions of plant and insect genetic variation and how these interact remain unclear and are rarely subject to assessment in the same experimental context. Here, we address this knowledge gap using a recent host-range expansion onto alfalfa by the Melissa blue butterfly. Common garden rearing experiments and genomic data show that caterpillar performance depends on plant and insect genetic variation, with insect genetics contributing to performance earlier in development and plant genetics later. Our models of performance based on caterpillar genetics retained predictive power when applied to a second common garden. Much of the plant genetic effect could be explained by heritable variation in plant phytochemicals, especially saponins, peptides, and phosphatidyl cholines, providing a possible mechanistic understanding of variation in the species interaction. We find evidence of polygenic, mostly additive effects within and between species, with consistent effects of plant genotype on growth and development across multiple butterfly species. Our results inform theories of plant–insect coevolution and the evolution of diet breadth in herbivorous insects and other host-specific parasites. 
    more » « less