skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting Garg's 2-Approximation Algorithm for the k-MST Problem in Graphs
This paper revisits the 2-approximation algorithm for k-MST presented by Garg [9] in light of a recent paper of Paul et al. [14]. In the k-MST problem, the goal is to return a tree spanning k vertices of minimum total edge cost. Paul et al. [14] extend Garg's primal-dual subroutine to improve the approximation ratios for the budgeted prize-collecting traveling salesman and minimum spanning tree problems. We follow their algorithm and analysis to provide a cleaner version of Garg's result. Additionally, we introduce the novel concept of a kernel which allows an easier visualization of the stages of the algorithm and a clearer understanding of the pruning phase. Other notable updates include presenting a linear programming formulation of the k-MST problem, including pseudocode, replacing the coloring scheme used by Garg with the simpler concept of neutral sets, and providing an explicit potential function.  more » « less
Award ID(s):
2007009
PAR ID:
10420894
Author(s) / Creator(s):
; ; ;
Editor(s):
Kavitha, Telikepalli; Mehlhorn, Kurt
Date Published:
Journal Name:
Proceedings of the 2023 Symposium on Simplicity in Algorithms
Page Range / eLocation ID:
56-68
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mestre, Julián; Wirth, Anthony (Ed.)
    For a set of red and blue points in the plane, a minimum bichromatic spanning tree (MinBST) is a shortest spanning tree of the points such that every edge has a red and a blue endpoint. A MinBST can be computed in O(n log n) time where n is the number of points. In contrast to the standard Euclidean MST, which is always plane (noncrossing), a MinBST may have edges that cross each other. However, we prove that a MinBST is quasi-plane, that is, it does not contain three pairwise crossing edges, and we determine the maximum number of crossings. Moreover, we study the problem of finding a minimum plane bichromatic spanning tree (MinPBST) which is a shortest bichromatic spanning tree with pairwise noncrossing edges. This problem is known to be NP-hard. The previous best approximation algorithm, due to Borgelt et al. (2009), has a ratio of O(√n). It is also known that the optimum solution can be computed in polynomial time in some special cases, for instance, when the points are in convex position, collinear, semi-collinear, or when one color class has constant size. We present an O(log n)-factor approximation algorithm for the general case. 
    more » « less
  2. We study the multi-level Steiner tree problem: a generalization of the Steiner tree problem in graphs where terminals T require varying priority, level, or quality of service. In this problem, we seek to find a minimum cost tree containing edges of varying rates such that any two terminals u, v with priorities P(u), P(v) are connected using edges of rate min{P(u),P(v)} or better. The case where edge costs are proportional to their rate is approximable to within a constant factor of the optimal solution. For the more general case of non-proportional costs, this problem is hard to approximate with ratio c log log n, where n is the number of vertices in the graph. A simple greedy algorithm by Charikar et al., however, provides a min{2(ln |T | + 1), lρ}-approximation in this setting, where ρ is an approximation ratio for a heuristic solver for the Steiner tree problem and l is the number of priorities or levels (Byrka et al. give a Steiner tree algorithm with ρ ≈ 1.39, for example). In this paper, we describe a natural generalization to the multi-level case of the classical (single-level) Steiner tree approximation algorithm based on Kruskal’s minimum spanning tree algorithm. We prove that this algorithm achieves an approximation ratio at least as good as Charikar et al., and experimentally performs better with respect to the optimum solution. We develop an integer linear programming formulation to compute an exact solution for the multi-level Steiner tree problem with non-proportional edge costs and use it to evaluate the performance of our algorithm on both random graphs and multi-level instances derived from SteinLib. 
    more » « less
  3. Given an undirected, weighted graph, the minimum spanning tree (MST)is a tree that connects all of the vertices of the graph with minimum sum of edge weights. In real world applications, network designers often seek to quickly find a replacement edge for each edge in the MST. For example, when a traffic accident closes a road in a transportation network, or a line goes down in a communication network, the replacement edge may reconnect the MST at lowest cost. In the paper, we consider the case of finding the lowest cost replacement edge for each edge of the MST. A previous algorithm by Tarjan takes O{m lpha(m, n)} time and space, where $lpha(m, n)$ is the inverse Ackermann’s function. Given the MST and sorted non-tree edges, our algorithm is the first practical algorithm that runs in O(m+n) time and O(m+n) space to find all replacement edges. Additionally, since the most vital edge is the tree edge whose removal causes the highest cost, our algorithm finds it in linear time. 
    more » « less
  4. Chan, Timothy; Fischer, Johannes; Iacono, John; Herman, Grzegorz (Ed.)
    In the Directed Steiner Tree (DST) problem the input is a directed edge-weighted graph G = (V,E), a root vertex r and a set S ⊆ V of k terminals. The goal is to find a min-cost subgraph that connects r to each of the terminals. DST admits an O(log² k/log log k)-approximation in quasi-polynomial time [Grandoni et al., 2022; Rohan Ghuge and Viswanath Nagarajan, 2022], and an O(k^{ε})-approximation for any fixed ε > 0 in polynomial-time [Alexander Zelikovsky, 1997; Moses Charikar et al., 1999]. Resolving the existence of a polynomial-time poly-logarithmic approximation is a major open problem in approximation algorithms. In a recent work, Friggstad and Mousavi [Zachary Friggstad and Ramin Mousavi, 2023] obtained a simple and elegant polynomial-time O(log k)-approximation for DST in planar digraphs via Thorup’s shortest path separator theorem [Thorup, 2004]. We build on their work and obtain several new results on DST and related problems. - We develop a tree embedding technique for rooted problems in planar digraphs via an interpretation of the recursion in [Zachary Friggstad and Ramin Mousavi, 2023]. Using this we obtain polynomial-time poly-logarithmic approximations for Group Steiner Tree [Naveen Garg et al., 2000], Covering Steiner Tree [Goran Konjevod et al., 2002] and the Polymatroid Steiner Tree [Gruia Călinescu and Alexander Zelikovsky, 2005] problems in planar digraphs. All these problems are hard to approximate to within a factor of Ω(log² n/log log n) even in trees [Eran Halperin and Robert Krauthgamer, 2003; Grandoni et al., 2022]. - We prove that the natural cut-based LP relaxation for DST has an integrality gap of O(log² k) in planar digraphs. This is in contrast to general graphs where the integrality gap of this LP is known to be Ω(√k) [Leonid Zosin and Samir Khuller, 2002] and Ω(n^{δ}) for some fixed δ > 0 [Shi Li and Bundit Laekhanukit, 2022]. - We combine the preceding results with density based arguments to obtain poly-logarithmic approximations for the multi-rooted versions of the problems in planar digraphs. For DST our result improves the O(R + log k) approximation of [Zachary Friggstad and Ramin Mousavi, 2023] when R = ω(log² k). 
    more » « less
  5. In this paper, we present a network-based template for analyzing large-scale dynamic data. Specifically, we present a novel shared-memory parallel algorithm for updating treebased structures, including connected components (CC) and the minimum spanning tree (MST) on dynamic networks. We propose a rooted tree-based data structure to store the edges that are most relevant to the analysis. Our algorithm is based on updating the information stored in this rooted tree.In this paper, we present a network-based template for analyzing large-scale dynamic data. Specifically, we present a novel shared-memory parallel algorithm for updating tree-based structures, including connected components (CC) and the minimum spanning tree (MST) on dynamic networks. We propose a rooted tree-based data structure to store the edges that are most relevant to the analysis. Our algorithm is based on updating the information stored in this rooted tree. 
    more » « less