skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The isomorphism problem for tensor algebras of multivariable dynamical systems
Abstract We resolve the isomorphism problem for tensor algebras of unital multivariable dynamical systems. Specifically, we show that unitary equivalence after a conjugation for multivariable dynamical systems is a complete invariant for complete isometric isomorphisms between their tensor algebras. In particular, this settles a conjecture of Davidson and Kakariadis, Inter. Math. Res. Not. 2014 (2014), 1289–1311 relating to work of Arveson, Acta Math. 118 (1967), 95–109 from the 1960s, and extends related work of Kakariadis and Katsoulis, J. Noncommut. Geom. 8 (2014), 771–787.  more » « less
Award ID(s):
2054781
PAR ID:
10420926
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Forum of Mathematics, Sigma
Volume:
10
ISSN:
2050-5094
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We study a commutant-closed collection of von Neumann algebras acting on a common Hilbert space indexed by a poset with an order-reversing involution. We give simple geometric axioms for the poset which allow us to construct a braided tensor category of superselection sectors analogous to the construction of Gabbiani and Fröhlich for conformal nets. For cones in$$\mathbb {R}^2$$ R 2 , we weaken our conditions to a bounded spread version of Haag duality and obtain similar results. We show that intertwined nets of algebras have isomorphic braided tensor categories of superselection sectors. Finally, we show that the categories constructed here are equivalent to those constructed by Naaijkens and Ogata for certain 2D quantum spin systems. 
    more » « less
  2. Building on work of Ruelle and Putnam in the Smale space case, Thomsen defined the homoclinic and heteroclinic -algebras for an expansive dynamical system. In this paper we define a class of expansive dynamical systems, called synchronizing dynamical systems, that exhibit hyperbolic behavior almost everywhere. Synchronizing dynamical systems generalize Smale spaces (and even finitely presented systems). Yet they still have desirable dynamical properties such as having a dense set of periodic points. We study various -algebras associated with a synchronizing dynamical system. Among other results, we show that the homoclinic algebra of a synchronizing system contains an ideal which behaves like the homoclinic algebra of a Smale space. 
    more » « less
  3. We generalize Jones’ planar algebras by internalising the notion to a pivotal braided tensor category C \mathcal {C} . To formulate the notion, the planar tangles are now equipped with additional ‘anchor lines’ which connect the inner circles to the outer circle. We call the resulting notion ananchored planar algebra. If we restrict to the case when C \mathcal {C} is the category of vector spaces, then we recover the usual notion of a planar algebra. Building on our previous work on categorified traces, we prove that there is an equivalence of categories between anchored planar algebras in C \mathcal {C} and pivotal module tensor categories over C \mathcal {C} equipped with a chosen self-dual generator. Even in the case of usual planar algebras, the precise formulation of this theorem, as an equivalence of categories, has not appeared in the literature. Using our theorem, we describe many examples of anchored planar algebras. 
    more » « less
  4. Abstract In our previous article (http://arxiv.org/abs/1607.06041), we established an equivalence between pointed pivotal module tensor categories and anchored planar algebras. This article introduces the notion of unitarity for both module tensor categories and anchored planar algebras, and establishes the unitary analog of the above equivalence. Our constructions use Baez’s 2-Hilbert spaces (i.e., semisimple$$\textrm{C}^*$$ C -categories equipped with unitary traces), the unitary Yoneda embedding, and the notion of unitary adjunction for dagger functors between 2-Hilbert spaces. 
    more » « less
  5. Symmetry algebras of quantum many-body systems with locality can be understood using commutant algebras, which are defined as algebras of operators that commute with a given set of local operators. In this work, we show that these symmetry algebras can be expressed as frustration-free ground states of a local superoperator, which we refer to as a “super-Hamiltonian.” We demonstrate this for conventional symmetries such as Z 2 , U ( 1 ) , and S U ( 2 ) , where the symmetry algebras map to various kinds of ferromagnetic ground states, as well as for unconventional ones that lead to weak ergodicity-breaking phenomena of Hilbert-space fragmentation (HSF) and quantum many-body scars. In addition, we show that the low-energy excitations of this super-Hamiltonian can be understood as approximate symmetries, which in turn are related to slowly relaxing hydrodynamic modes in symmetric systems. This connection is made precise by relating the super-Hamiltonian to the superoperator that governs the operator relaxation in noisy symmetric Brownian circuits and this physical interpretation also provides a novel interpretation for Mazur bounds for autocorrelation functions. We find examples of gapped (gapless) super-Hamiltonians indicating the absence (presence) of slow modes, which happens in the presence of discrete (continuous) symmetries. In the gapless cases, we recover hydrodynamic modes such as diffusion, tracer diffusion, and asymptotic scars in the presence of U ( 1 ) symmetry, HSF, and a tower of quantum scars, respectively. In all, this demonstrates the power of the commutant-algebra framework in obtaining a comprehensive understanding of exact symmetries and associated approximate symmetries and hydrodynamic modes, and their dynamical consequences in systems with locality. Published by the American Physical Society2024 
    more » « less