Consider the linear transport equation in 1D under an external confining potential \begin{document}$$ \Phi $$\end{document}: \begin{document}$$ \begin{equation*} {\partial}_t f + v {\partial}_x f - {\partial}_x \Phi {\partial}_v f = 0. \end{equation*} $$\end{document} For \begin{document}$$ \Phi = \frac {x^2}2 + \frac { \varepsilon x^4}2 $$\end{document} (with \begin{document}$$ \varepsilon >0 $$\end{document} small), we prove phase mixing and quantitative decay estimates for \begin{document}$$ {\partial}_t \varphi : = - \Delta^{-1} \int_{ \mathbb{R}} {\partial}_t f \, \mathrm{d} v $$\end{document}, with an inverse polynomial decay rate \begin{document}$$ O({\langle} t{\rangle}^{-2}) $$\end{document}. In the proof, we develop a commuting vector field approach, suitably adapted to this setting. We will explain why we hope this is relevant for the nonlinear stability of the zero solution for the Vlasov–Poisson system in \begin{document}$ 1 $$\end{document}D under the external potential \begin{document}$$ \Phi $$\end{document}$.
more »
« less
Instability of the soliton for the focusing, mass-critical generalized KdV equation
In this paper we prove instability of the soliton for the focusing, mass-critical generalized KdV equation. We prove that the solution to the generalized KdV equation for any initial data with mass smaller than the mass of the soliton and close to the soliton in \begin{document}$$ L^{2} $$\end{document} norm must eventually move away from the soliton.
more »
« less
- Award ID(s):
- 2153750
- PAR ID:
- 10421118
- Date Published:
- Journal Name:
- Discrete & Continuous Dynamical Systems
- Volume:
- 42
- Issue:
- 4
- ISSN:
- 1078-0947
- Page Range / eLocation ID:
- 1767
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We establish existence of finite energy weak solutions to the kinetic Fokker-Planck equation and the linear Landau equation near Maxwellian, in the presence of specular reflection boundary condition for general domains. Moreover, by using a method of reflection and the \begin{document}$$ S_p $$\end{document} estimate of [7], we prove regularity in the kinetic Sobolev spaces \begin{document}$$ S_p $$\end{document} and anisotropic Hölder spaces for such weak solutions. Such \begin{document}$$ S_p $$\end{document} regularity leads to the uniqueness of weak solutions.more » « less
-
We consider the well-known Lieb-Liniger (LL) model for \begin{document}$ N $$\end{document} bosons interacting pairwise on the line via the \begin{document}$$ \delta $$\end{document} potential in the mean-field scaling regime. Assuming suitable asymptotic factorization of the initial wave functions and convergence of the microscopic energy per particle, we show that the time-dependent reduced density matrices of the system converge in trace norm to the pure states given by the solution to the one-dimensional cubic nonlinear Schrödinger equation (NLS) with an explict rate of convergence. In contrast to previous work [3] relying on the formalism of second quantization and coherent states and without an explicit rate, our proof is based on the counting method of Pickl [65,66,67] and Knowles and Pickl [44]. To overcome difficulties stemming from the singularity of the \begin{document}$$ \delta $$\end{document} potential, we introduce a new short-range approximation argument that exploits the Hölder continuity of the \begin{document}$$ N $$\end{document}-body wave function in a single particle variable. By further exploiting the \begin{document}$$ L^2 $$\end{document}-subcritical well-posedness theory for the 1D cubic NLS, we can prove mean-field convergence when the limiting solution to the NLS has finite mass, but only for a very special class of \begin{document}$$ N $$\end{document}$-body initial states.more » « less
-
Genetic variations in the COVID-19 virus are one of the main causes of the COVID-19 pandemic outbreak in 2020 and 2021. In this article, we aim to introduce a new type of model, a system coupled with ordinary differential equations (ODEs) and measure differential equation (MDE), stemming from the classical SIR model for the variants distribution. Specifically, we model the evolution of susceptible \begin{document}$ S $$\end{document} and removed \begin{document}$$ R $$\end{document} populations by ODEs and the infected \begin{document}$$ I $$\end{document} population by a MDE comprised of a probability vector field (PVF) and a source term. In addition, the ODEs for \begin{document}$$ S $$\end{document} and \begin{document}$$ R $$\end{document} contains terms that are related to the measure \begin{document}$$ I $$\end{document}$. We establish analytically the well-posedness of the coupled ODE-MDE system by using generalized Wasserstein distance. We give two examples to show that the proposed ODE-MDE model coincides with the classical SIR model in case of constant or time-dependent parameters as special cases.more » « less
-
This paper studies a family of generalized surface quasi-geostrophic (SQG) equations for an active scalar \begin{document}$$ \theta $$\end{document} on the whole plane whose velocities have been mildly regularized, for instance, logarithmically. The well-posedness of these regularized models in borderline Sobolev regularity have previously been studied by D. Chae and J. Wu when the velocity \begin{document}$ u $$\end{document} is of lower singularity, i.e., \begin{document}$$ u = -\nabla^{\perp} \Lambda^{ \beta-2}p( \Lambda) \theta $$\end{document}, where \begin{document}$$ p $$\end{document} is a logarithmic smoothing operator and \begin{document}$$ \beta \in [0, 1] $$\end{document}. We complete this study by considering the more singular regime \begin{document}$$ \beta\in(1, 2) $$\end{document}$. The main tool is the identification of a suitable linearized system that preserves the underlying commutator structure for the original equation. We observe that this structure is ultimately crucial for obtaining continuity of the flow map. In particular, straightforward applications of previous methods for active transport equations fail to capture the more nuanced commutator structure of the equation in this more singular regime. The proposed linearized system nontrivially modifies the flux of the original system in such a way that it coincides with the original flux when evaluated along solutions of the original system. The requisite estimates are developed for this modified linear system to ensure its well-posedness.more » « less
An official website of the United States government

