ABSTRACT We study the evolution of eccentricity and inclination of massive planets in low-density cavities of protoplanetary discs using three-dimensional (3D) simulations. When the planet’s orbit is aligned with the equatorial plane of the disc, the eccentricity increases to high values of 0.7–0.9 due to the resonant interaction with the inner parts of the disc. For planets on inclined orbits, the eccentricity increases due to the Kozai–Lidov mechanism, where the disc acts as an external massive body, which perturbs the planet’s orbit. At small inclination angles, $${\lesssim}30^\circ$$, the resonant interaction with the inner disc strongly contributes to the eccentricity growth, while at larger angles, eccentricity growth is mainly due to the Kozai–Lidov mechanism. We conclude that planets inside low-density cavities tend to acquire high eccentricity if favourable conditions give sufficient time for growth. The final value of the planet’s eccentricity after the disc dispersal depends on the planet’s mass and the properties of the cavity and protoplanetary disc.
more »
« less
Eccentricity growth of massive planets inside cavities of protoplanetary discs
ABSTRACT We carry out hydrodynamical simulations to study the eccentricity growth of a 1–30 Jupiter mass planet located inside the fixed cavity of a protoplanetary disc. The planet exchanges energy and angular momentum with the disc at resonant locations, and its eccentricity grows due to Lindblad resonances. We observe several phases of eccentricity growth where different eccentric Lindblad resonances dominate from 1:3 up to 3:5. The maximum values of eccentricity reached in our simulations are 0.65–0.75. We calculate the eccentricity growth rate for different planet masses and disc parameters and derive analytical dependencies on these parameters. We observe that the growth rate is proportional to both the planet’s mass and the characteristic disc mass for a wide range of parameters. In a separate set of simulations, we derived the width of the 1:3 Lindblad resonance.
more »
« less
- Award ID(s):
- 2009820
- PAR ID:
- 10421342
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 523
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 2832-2849
- Size(s):
- p. 2832-2849
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We developed convolutional neural networks (CNNs) to rapidly and directly infer the planet mass from radio dust continuum images. Substructures induced by young planets in protoplanetary discs can be used to infer the potential young planets’ properties. Hydrodynamical simulations have been used to study the relationships between the planet’s properties and these disc features. However, these attempts either fine-tuned numerical simulations to fit one protoplanetary disc at a time, which was time consuming, or azimuthally averaged simulation results to derive some linear relationships between the gap width/depth and the planet mass, which lost information on asymmetric features in discs. To cope with these disadvantages, we developed Planet Gap neural Networks (PGNets) to infer the planet mass from two-dimensional images. We first fit the gridded data in Zhang et al. as a classification problem. Then, we quadrupled the data set by running additional simulations with near-randomly sampled parameters, and derived the planet mass and disc viscosity together as a regression problem. The classification approach can reach an accuracy of 92 per cent, whereas the regression approach can reach 1σ as 0.16 dex for planet mass and 0.23 dex for disc viscosity. We can reproduce the degeneracy scaling α ∝ $$M_\mathrm{ p}^3$$ found in the linear fitting method, which means that the CNN method can even be used to find degeneracy relationship. The gradient-weighted class activation mapping effectively confirms that PGNets use proper disc features to constrain the planet mass. We provide programs for PGNets and the traditional fitting method from Zhang et al., and discuss each method’s advantages and disadvantages.more » « less
-
ABSTRACT The hunt is on for dozens of protoplanets hypothesized to reside in protoplanetary discs with imaged gaps. How bright these planets are, and what they will grow to become, depend on their accretion rates, which may be in the runaway regime. Using 3D global simulations, we calculate maximum gas accretion rates for planet masses Mp from 1$$\, \mathrm{ M}_{{\oplus }}$$ to $$10\, \mathrm{ M}_{\rm J}$$. When the planet is small enough that its sphere of influence is fully embedded in the disc, with a Bondi radius rBondi smaller than the disc’s scale height Hp – such planets have thermal mass parameters qth ≡ (Mp/M⋆)/(Hp/Rp)3 ≲ 0.3, for host stellar mass M⋆ and orbital radius Rp – the maximum accretion rate follows a Bondi scaling, with $$\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^2 / (H_{\rm p}/R_{\rm p})^3$$ for ambient disc density ρg. For more massive planets with 0.3 ≲ qth ≲ 10, the Hill sphere replaces the Bondi sphere as the gravitational sphere of influence, and $$\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^1$$, with no dependence on Hp/Rp. In the strongly superthermal limit when qth ≳ 10, the Hill sphere pops well out of the disc, and $$\max \dot{M}_{\rm p} \propto \rho _{\rm g}M_{\rm p}^{2/3} (H_{\rm p}/R_{\rm p})^1$$. Applied to the two confirmed protoplanets PDS 70b and c, our numerically calibrated maximum accretion rates imply that their Jupiter-like masses may increase by up to a factor of ∼2 before their parent disc dissipates.more » « less
-
ABSTRACT We use the general relativistic radiation magnetohydrodynamics code KORAL to simulate the accretion disc formation resulting from the tidal disruption of a solar mass star around a supermassive black hole (BH) of mass 106 M⊙. We simulate the disruption of artificially more bound stars with orbital eccentricity e ≤ 0.99 (compared to the more realistic case of parabolic orbits with e = 1) on close orbits with impact parameter β ≥ 3. We use a novel method of injecting the tidal stream into the domain, and we begin the stream injection at the peak fallback rate in this study. For two simulations, we choose e = 0.99 and inject mass at a rate that is similar to parabolic TDEs. We find that the disc only becomes mildly circularized with eccentricity e ≈ 0.6 within the 3.5 d that we simulate. The rate of circularization is faster for pericenter radii that come closer to the BH. The emitted radiation is mildly super-Eddington with $$L_{\rm {bol}}\approx 3{-}5\, L_{\rm {Edd}}$$ and the photosphere is highly asymmetric with the photosphere being significantly closer to the inner accretion disc for viewing angles near pericenter. We find that soft X-ray radiation with Trad ≈ 3–5 × 105 K may be visible for chance viewing angles. Our simulations suggest that TDEs should be radiatively inefficient with η ≈ 0.009–0.014.more » « less
-
null (Ed.)ABSTRACT Recent ALMA molecular line observations have revealed 3D gas velocity structure in protoplanetary discs, shedding light on mechanisms of disc accretion and structure formation. (1) By carrying out viscous simulations, we confirm that the disc’s velocity structure differs dramatically using vertical stress profiles from different accretion mechanisms. Thus, kinematic observations tracing flows at different disc heights can potentially distinguish different accretion mechanisms. On the other hand, the disc surface density evolution is mostly determined by the vertically integrated stress. The sharp disc outer edge constrained by recent kinematic observations can be caused by a radially varying α in the disc. (2) We also study kinematic signatures of a young planet by carrying out 3D planet–disc simulations. The relationship between the planet mass and the ‘kink’ velocity is derived, showing a linear relationship with little dependence on disc viscosity, but some dependence on disc height when the planet is massive (e.g. 10MJ). We predict the ‘kink’ velocities for the potential planets in DSHARP discs. At the gap edge, the azimuthally averaged velocities at different disc heights deviate from the Keplerian velocity at similar amplitudes, and its relationship with the planet mass is consistent with that in 2D simulations. After removing the planet, the azimuthally averaged velocity barely changes within the viscous time-scale, and thus the azimuthally averaged velocity structure at the gap edge is due to the gap itself and not directly caused to the planet. Combining both axisymmetric kinematic observations and the residual ‘kink’ velocity is needed to probe young planets in protoplanetary discs.more » « less
An official website of the United States government
