Porous polymers have interesting acoustic properties including wave dampening and acoustic impedance matching and may be used in numerous acoustic applications, e.g., waveguiding or acoustic cloaking. These materials can be prepared by the inclusion of gas-filled voids, or pores, within an elastic polymer network; therefore, porous polymers that have controlled porosity values and a wide range of possible mechanical properties are needed, as these are key factors that impact the sound-dampening properties. Here, the synthesis of acoustic materials with varying porosities and mechanical properties that could be controlled independent of the pore morphology using emulsion templated polymerizations is described. Polydimethylsiloxane-based ABA triblock copolymer surfactants were prepared using reversible addition−fragmentation chain transfer polymerizations to control the emulsion template and act as an additional crosslinker in the polymerization. Acoustic materials prepared with reactive surfactants possessed a storage modulus of ∼300 kPa at a total porosity of 71% compared to materials prepared using analogous nonreactive surfactants that possessed storage modulus values of ∼150 kPa at similar porosities. These materials display very low longitudinal sound speeds of ∼35 m/s at ultrasonic frequencies, making them excellent candidates in the preparation of acoustic devices such as metasurfaces or lenses.
more »
« less
Assessment and Non-Destructive Evaluation of the Influence of Residual Solvent on a Two-Part Epoxy-Based Adhesive Using Ultrasonics
Polymers are increasingly being used in higher demanding applications due to their ability to tailor the properties of structures while allowing for a weight and cost reduction. Solvents play an important role in the manufacture of polymeric structures since they allow for a reduction in the polymer’s viscosity or assist with the dispersion of fillers into the polymer matrix. However, the incorrect removal of the solvent affects both the physical and chemical properties of polymeric materials. The presence of residual solvent can also negatively affect the curing kinetics and the final quality of polymers. Destructive testing is mainly performed to characterize the properties of these materials. However, this type of testing involves using lab-type equipment that cannot be taken in-field to perform in situ testing and requires a specific sample preparation. Here, a method is presented to non-destructively evaluate the curing process and final viscoelastic properties of polymeric materials using ultrasonics. In this study, changes in longitudinal sound speed were detected during the curing of an aerospace epoxy adhesive as a result of variations in polymer chemistry. To simulate the presence of residual solvent, samples containing different weight percentages of isopropyl alcohol were manufactured and tested using ultrasonics. Thermogravimetric analysis was used to show changes in the decomposition of the adhesive due to the presence of IPA within the polymer structure. Adding 2, 4, and 6 wt.% of IPA decreased the adhesive’s lap shear strength by 40, 58, and 71%, respectively. Ultrasonics were used to show how the solvent influenced the curing process and the final sound speed of the adhesive. Young’s modulus and Poisson’s ratio were determined using both the longitudinal and shear sound speeds of the adhesive. Using ultrasonics has the potential to non-invasively characterize the quality of polymers in both an in-field and manufacturing settings, ensuring their reliability during use in demanding applications.
more »
« less
- Award ID(s):
- 2122078
- PAR ID:
- 10421436
- Date Published:
- Journal Name:
- Applied Sciences
- Volume:
- 13
- Issue:
- 6
- ISSN:
- 2076-3417
- Page Range / eLocation ID:
- 3883
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Chemical shrinkage in thermosetting polymers drives residual stress development and induces residual deformation in composite materials. Accurate characterization of chemical shrinkage during curing is therefore vital to minimize residual stresses through process modeling and optimize composite performance. This work introduces a novel methodology to measure the pre- and post-gelation chemical shrinkage of an epoxy resin using three-dimensional digital image correlation (3D-DIC). Differential scanning calorimetry (DSC) is employed to calculate reaction kinetics and correlate chemical shrinkage with the degree of cure. Rheology experiments are conducted to quantify gelation and validate post-gelation. 3D-DIC post-gelation results show excellent agreement with rheology. Pre-gelation results show the effect of the in-situ curing in the proximity of constraints on the global strain behavior. This work introduced an innovative approach to characterize the chemical shrinkage of thermosets during curing, which will enable accurate residual stress prediction for enhancing thermoset composite performance and provide insight into the in-situ polymer behavior during processing.more » « less
-
Abstract Objective.Curcumin is an antioxidant and anti-inflammatory molecule that may provide neuroprotection following central nervous system injury. However, curcumin is hydrophobic, limiting its ability to be loaded and then released from biomaterials for neural applications. We previously developed polymers containing curcumin, and these polymers may be applied to neuronal devices or to neural injury to promote neuroprotection. Thus, our objective was to evaluate two curcumin polymers as potential neuroprotective materials for neural applications.Approach.For each curcumin polymer, we created three polymer solutions by varying the weight percentage of curcumin polymer in solvent. These solutions were subsequently coated onto glass coverslips, and the thickness of the polymer was assessed using profilometry. Polymer degradation and dissolution was assessed using brightfield microscopy, scanning electron microscopy, and gel permeation chromatography. The ability of the polymers to protect cortical neurons from free radical insult was assessed using anin vitrocortical culture model.Main results.The P50 curcumin polymer (containing greater poly(ethylene glycol) content than the P75 polymer), eroded readily in solution, with erosion dependent on the weight percentage of polymer in solvent. Unlike the P50 polymer, the P75 polymer did not undergo erosion. Since the P50 polymer underwent erosion, we expected that the P50 polymer would more readily protect cortical neurons from free radical insult. Unexpectedly, even though P75 films did not erode, P75 polymers protected neurons from free radical insult, suggesting that erosion is not necessary for these polymers to enable neuroprotection.Significance.This study is significant as it provides a framework to evaluate polymers for future neural applications. Additionally, we observed that some curcumin polymers do not require dissolution to enable neuroprotection. Future work will assess the ability of these materials to enable neuroprotection withinin vivomodels of neural injury.more » « less
-
Thermoset polymer composites, known for their outstanding thermal, mechanical, and chemical properties, have found applications in diverse fields, including aerospace and automotive industries. These polymers, once cured, cannot be recycled, making the end-of-life management of these composites very difficult and posing an environmental challenge. Conventional recycling methods are unsuitable for thermosets, forcing their accumulation in landfills and raising environmental concerns. One possible solution to overcome this concern is to use resins or curing agents, or both, made from biodegradable materials. This study explores the fabrication and characterization of polymer composites using a commercially available green curing agent made from biomass. The composite laminates were fabricated using HVARTM (Heated Vacuum Assisted Resin Transfer Molding) process. In this process, heat pads are used to increase the temperature of both the epoxy resin and the plain weave carbon fiber laminate to a desired temperature, providing ease of flow to the resin. Small coupons were cut from the laminate using a water jet machine to study the flexural behavior of the composite in accordance with ASTM testing standards and compared with composite coupons fabricated using conventional epoxy resin.more » « less
-
Abstract Here, a polymer blend active layer that exhibits both electronic and adhesive properties is introduced. Various conjugated polymers are blended with a catechol‐based polymer that shows high adhesion, such that blends serve as the active layer of multifunctional sticky organic thin‐film transistors (OTFTs). Blend films maintain relatively constant field‐effect charge carrier mobility in OTFTs regardless of composition. Lap shear adhesion strength tests show that all blend films exhibit adhesive properties with adhesion values ranging from 0.05 to 4.30 MPa. With relatively consistent mobility and the presence of adhesive properties at different compositions, blends of conjugated and adhesive polymers can lead to next‐generation organic transistors for stable 3D stacking and waterproof adhesive sensors.more » « less
An official website of the United States government

