Extracting the cosmic microwave background (CMB) blackbody temperature power spectrum—which is dominated by the primary CMB signal and the kinematic Sunyaev-Zel'dovich (kSZ) effect—from millimeter-wave sky maps requires cleaning other sky components. In this work, we develop new methods to use large-scale structure (LSS) tracers to remove cosmic infrared background (CIB) and thermal Sunyaev-Zel'dovich (tSZ) contamination in such measurements. Our methods rely on the fact that LSS tracers are correlated with the CIB and tSZ signals, but their two-point correlations with the CMB and kSZ signals vanish on small scales, thus leaving the CMB blackbody power spectrum unbiased after cleaning. We develop methods analogous to delensing [de-CIB or de-(CIB +tSZ )] to clean CIB and tSZ contaminants using these tracers. We compare these methods to internal linear combination (ILC) methods, including novel approaches that incorporate the tracer maps in the ILC procedure itself, without requiring exact assumptions about the CIB spectral energy distribution. As a concrete example, we use the unWISE galaxy samples as tracers. We provide calculations for a combined Simons Observatory and Planck-like experiment, with our simulated sky model comprising eight frequencies from 93 to 353 GHz. Using unWISE tracers, improvements with our methods over current approaches are already non-negligible: we find improvements up to 20% in the kSZ power spectrum signal-to-noise ratio (SNR) when applying the de-CIB method to a tSZ-deprojected ILC map. These gains could be more significant when using additional LSS tracers from current surveys and will become even larger with future LSS surveys, with improvements in the kSZ power spectrum SNR up to 50%. For the total CMB blackbody power spectrum, these improvements stand at 4% and 7%, respectively.
more »
« less
Cosmology from the kinetic polarized Sunyaev Zel'dovich effect
Abstract The cosmic microwave background (CMB) photons that scatter off free electrons in the large-scale structure induce a linear polarization pattern proportional to the remote CMB temperature quadrupole observed in the electrons' rest frame. The associated blackbody polarization anisotropies are known as the polarized Sunyaev Zel'dovich (pSZ) effect. Relativistic corrections to the remote quadrupole field give rise to a non-blackbody polarization anisotropy proportional to the square of the transverse peculiar velocity field; this is the kinetic polarized Sunyaev Zel'dovich (kpSZ) effect. In this paper, we forecast the ability of future CMB and galaxy surveys to detect the kpSZ effect, finding that a statistically significant detection is within the reach of planned experiments. We further introduce a quadratic estimator for the square of the peculiar velocity field based on a galaxy survey and CMB polarization. Finally, we outline how the kpSZ effect is a probe of cosmic birefringence and primordial non-Gaussianity, forecasting the reach of future experiments.
more »
« less
- Award ID(s):
- 2112699
- PAR ID:
- 10421902
- Date Published:
- Journal Name:
- Journal of Cosmology and Astroparticle Physics
- Volume:
- 2022
- Issue:
- 10
- ISSN:
- 1475-7516
- Page Range / eLocation ID:
- 026
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The kinetic Sunyaev-Zel'dovich (kSZ) effect, i.e., the Doppler boost of cosmic microwave background (CMB) photons caused by their scattering off free electrons in galaxy clusters and groups with non-zero bulk velocity, is a powerful window on baryons in the universe. We present the first halo-model computation of the cross-power spectrum of the “projected-field” kSZ signal with large-scale structure (LSS) tracers. We compare and validate our calculations against previous studies, which relied on N -body-calibrated effective formulas rather than the halo model. We forecast results for CMB maps from the Atacama Cosmology Telescope (AdvACT), Simons Observatory (SO), and CMB-S4, and LSS survey data from the Dark Energy Survey, the Vera C. Rubin Observatory (VRO), and Euclid . In cross-correlation with galaxy number density, for AdvACT × unWISE we forecast an 18 σ projected-field kSZ detection using data already in hand. Combining SO CMB maps and unWISE galaxy catalogs, we expect a 62 σ detection, yielding precise measurements of the gas density profile radial slopes. Additionally, we forecast first detections of the kSZ — galaxy weak lensing cross-correlation with AdvACT × VRO/ Euclid (at 6 σ ) and of the kSZ — CMB weak lensing cross-correlation with SO (at 16 σ ). Finally, ≈ 10-20% precision measurements of the shape of the gas density profile should be possible with CMB-S4 kSZ — CMB lensing cross-correlation without using any external datasets.more » « less
-
Abstract Upcoming cosmic shear analyses will precisely measure the cosmic matter distribution at low redshifts. At these redshifts, the matter distribution is affected by galaxy formation physics, primarily baryonic feedback from star formation and active galactic nuclei. Employing measurements from theMagneticumandIllustrisTNGsimulations and a dark matter + baryon (DMB) halo model, this paper demonstrates that Sunyaev-Zel'dovich (SZ) effect observations of galaxy clusters, whose masses have been calibrated using weak gravitational lensing, can constrain the baryonic impact on cosmic shear with statistical and systematic errors subdominant to the measurement errors of DES-Y3 and LSST-Y1, with systematic errors on S8and Ωmreaching 10% and 50% of the statistical errors, respectively. For LSST-Y6 and Roman surveys, these systematic errors increase to 150% and 100% of the statistical errors, indicating the necessity for further model developments for future surveys. We further dissect the contributions from different scales and halos with different masses to cosmic shear, highlighting the dominant role of SZ clusters at scales critical for cosmic shear analyses. These findings suggest a promising avenue for future joint analyses of Cosmic Microwave Background (CMB) and lensing surveys.more » « less
-
ABSTRACT In this work, we examine the impact of our motion with respect to the Cosmic Microwave Background (CMB) rest frame on statistics of CMB maps by examining the one-, two-, three-, and four- point statistics of simulated maps of the CMB and Sunyaev–Zeldovich (SZ) effects. We validate boosting codes by comparing their outcomes for temperature and polarization power spectra up to ℓ ≃ 6000. We derive and validate a new analytical formula for the computation of the boosted power spectrum of a signal with a generic frequency dependence. As an example we show how this increases the boosting correction to the power spectrum of CMB intensity measurements by $${\sim}30{{\ \rm per\ cent}}$$ at 150 GHz. We examine the effect of boosting on thermal and kinetic SZ power spectra from semianalytical and hydrodynamical simulations; the boosting correction is generally small for both simulations, except when considering frequencies near the tSZ null. For the non-Gaussian statistics, in general we find that boosting has no impact with two exceptions. We find that, whilst the statistics of the CMB convergence field are unaffected, quadratic estimators that are used to measure this field can become biased at the $$O(1){{\ \rm per\ cent}}$$ level by boosting effects. We present a simple modification to the standard estimators that removes this bias. Second, bispectrum estimators can receive a systematic bias from the Doppler induced quadrupole when there is anisotropy in the sky – in practice this anisotropy comes from masking and inhomogeneous noise. This effect is unobservable and already removed by existing analysis methods.more » « less
-
ABSTRACT In the frame of the Solar system, the Doppler and aberration effects cause distortions in the form of mode couplings in the cosmic microwave background (CMB) temperature and polarization power spectra and, hence, impose biases on the statistics derived by the moving observer. We explore several aspects of such biases and pay close attention to their effects on CMB polarization, which, previously, have not been examined in detail. A potentially important bias that we introduce here is boost variance—an additional term in cosmic variance, induced by the observer’s motion. Although this additional term is negligible for whole-sky experiments, in partial-sky experiments it can reach 10 per cent (temperature) to 20 per cent (polarization) of the standard cosmic variance (σ). Furthermore, we investigate the significance of motion-induced power and parity asymmetries in TT, EE, and TE as well as potential biases induced in cosmological parameter estimation performed with whole-sky TTTEEE. Using Planck-like simulations, we find that our local motion induces $$\sim 1\!-\!2 {{\ \rm per\ cent}}$$ hemispherical asymmetry in a wide range of angular scales in the CMB temperature and polarization power spectra; however, it does not imply any significant amount of parity asymmetry or shift in cosmological parameters. Finally, we examine the prospects of measuring the velocity of the Solar system w.r.t. the CMB with future experiments via the mode coupling induced by the Doppler and aberration effects. Using the CMB TT, EE, and TE power spectra up to ℓ = 4000, the Simons Observatory and CMB-S4 can make a dipole-independent measurement of our local velocity, respectively, at 8.5σ and 20σ.more » « less
An official website of the United States government

