skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seasonal timing on a cyclical Earth: Towards a theoretical framework for the evolution of phenology
Phenology refers to the seasonal timing patterns commonly exhibited by life on Earth, from blooming flowers to breeding birds to human agriculture. Climate change is altering abiotic seasonality (e.g., longer summers) and in turn, phenological patterns contained within. However, how phenology should evolve is still an unsolved problem. This problem lies at the crux of predicting future phenological changes that will likely have substantial ecosystem consequences, and more fundamentally, of understanding an undeniably global phenomenon. Most studies have associated proximate environmental variables with phenological responses in case-specific ways, making it difficult to contextualize observations within a general evolutionary framework. We outline the complex but universal ways in which seasonal timing maps onto evolutionary fitness. We borrow lessons from life history theory and evolutionary demography that have benefited from a first principles-based theoretical scaffold. Lastly, we identify key questions for theorists and empiricists to help advance our general understanding of phenology.  more » « less
Award ID(s):
1851489
PAR ID:
10421976
Author(s) / Creator(s):
;
Date Published:
Journal Name:
PLOS Biology
Volume:
20
Issue:
12
ISSN:
1545-7885
Page Range / eLocation ID:
e3001952
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Seasonal variation in the availability of essential resources is one of the most important drivers of natural selection on the phasing and duration of annually recurring life-cycle events. Shifts in seasonal timing are among the most commonly reported responses to climate change and the capacity of organisms to adjust their timing, either through phenotypic plasticity or evolution, is a critical component of resilience. Despite growing interest in documenting and forecasting the impacts of climate change on phenology, our ability to predict how individuals, populations, and species might alter their seasonal timing in response to their changing environments is constrained by limited knowledge regarding the cues animals use to adjust timing, the endogenous genetic and molecular mechanisms that transduce cues into neural and endocrine signals, and the inherent capacity of animals to alter their timing and phasing within annual cycles. Further, the fitness consequences of phenological responses are often due to biotic interactions within and across trophic levels, rather than being simple outcomes of responses to changes in the abiotic environment. Here, we review the current state of knowledge regarding the mechanisms that control seasonal timing in vertebrates, as well as the ecological and evolutionary consequences of individual, population, and species-level variation in phenological responsiveness. Understanding the causes and consequences of climate-driven phenological shifts requires combining ecological, evolutionary, and mechanistic approaches at individual, populational, and community scales. Thus, to make progress in forecasting phenological responses and demographic consequences, we need to further develop interdisciplinary networks focused on climate change science. 
    more » « less
  2. Abstract Species with different life histories and communities that vary in their seasonal constraints tend to shift their phenology (seasonal timing) differentially in response to climate warming.We investigate how these variable phenological shifts aggregate to influence phenological overlap within communities. Phenological advancements of later season species and extended durations of early season species may increase phenological overlap, with implications for species' interactions such as resource competition.We leverage extensive historic (1958–1960) and recent (2006–2015) weekly survey data for communities of grasshoppers along a montane elevation gradient to assess the impact of climate on shifts in the phenology and abundance distributions of species. We then examine how these responses are influenced by the seasonal timing of species and elevation, and how in aggregate they influence degrees of phenological overlap within communities.In warmer years, abundance distributions shift earlier in the season and become broader. Total abundance responds variably among species and we do not detect a significant response across species. Shifts in abundance distributions are not strongly shaped by species' seasonal timing or sites of variable elevations. The area of phenological overlap increases in warmer years due to shifts in the relative seasonal timing of compared species. Species that overwinter as nymphs increasingly overlap with later season species that advance their phenology. The days of phenological overlap also increase in warm years but the response varies across sites of variable elevation. Our phenological overlap metric based on comparing single events—the dates of peak abundance—does not shift significantly with warming.Phenological shifts are more complex than shifts in single dates such as first occurrence. As abundance distributions shift earlier and become broader in warm years, phenological overlap increases. Our analysis suggests that overall grasshopper abundance is relatively robust to climate and associated phenological shifts but we find that increased overlap can decrease abundance, potentially by strengthening species interactions such as resource competition. 
    more » « less
  3. Abstract Recurring seasonal changes can lead to the evolution of phenological cues. For example, many arthropods undergo photoperiodic diapause, a programmed developmental arrest induced by short autumnal day length. The selective mechanisms that determine the timing of autumnal diapause initiation have not been empirically identified. We quantified latitudinal clines in genetically determined diapause timing of an invasive mosquito,Aedes albopictus,on two continents. We show that variation in diapause timing within and between continents is explained by a novel application of a growing degree day (GDD) model that delineates a location‐specific deadline after which it is not possible to complete an additional full life cycle. GDD models are widely used to predict spring phenology by modelling growth and development as physiological responses to ambient temperatures. Our results show that the energy accumulation dynamics represented by GDD models have also led to the evolution of an anticipatory life‐history cue in autumn. 
    more » « less
  4. Phenological shifts are a widely studied consequence of climate change. Little is known, however, about certain critical phenological events, nor about mechanistic links between shifts in different life-history stages of the same organism. Among angiosperms, flowering times have been observed to advance with climate change, but, whether fruiting times shift as a direct consequence of shifting flowering times, or respond differently or not at all to climate change, is poorly understood. Yet, shifts in fruiting could alter species interactions, including by disrupting seed dispersal mutualisms. In the absence of long-term data on fruiting phenology, but given extensive data on flowering, we argue that an understanding of whether flowering and fruiting are tightly linked or respond independently to environmental change can significantly advance our understanding of how fruiting phenologies will respond to warming climates. Through a case study of biotically and abiotically dispersed plants, we present evidence for a potential functional link between the timing of flowering and fruiting. We then propose general mechanisms for how flowering and fruiting life history stages could be functionally linked or independently driven by external factors, and we use our case study species and phenological responses to distinguish among proposed mechanisms in a real-world framework. Finally, we identify research directions that could elucidate which of these mechanisms drive the timing between subsequent life stages. Understanding how fruiting phenology is altered by climate change is essential for all plant species but is particularly critical to sustaining the large numbers of plant species that rely on animal-mediated dispersal, as well as the animals that rely on fruit for sustenance. 
    more » « less
  5. The reproductive phenology in plants consists of successive life cycle phases leading to reproductive success. In seed plants, cycads and other dioecious groups have complex reproductive systems, where individuals require synchronizations among two sexes and populations of the same species. Here, we analyzed phenology between populations of three geographically close species in the cycad genus Ceratozamia Brongn. We described the lifespan of pollen and ovulate strobili and their morphological changes throughout ontogeny and evaluated synchrony among reproductive events, focusing on the timing and abundance of the receptivity and open pollen phases. Our results showed that the reproductive timing in the three species was highly synchronous, and that the overlap between the receptivity and open pollen phases could point to gene flow among populations of different species. We identified a correlation between the reproductive patterns and the temperature and precipitation regimes. Pollen and ovulate strobili were produced during the rainy season, whereas the period of synchrony between receptivity and pollen occurred during the dry season. The seed release occurred during the rainy season, which could contribute to keep the seed moist and prevent the embryo from drying out. Finally, we highlight the utility of studies in wild populations for the ecological and evolutionary understanding of phenological patterns in cycads. 
    more » « less