skip to main content


This content will become publicly available on June 1, 2024

Title: Dialogue Act Classification via Transfer Learning for Automated Labeling of Interviewee Responses in Virtual Reality Job Interview Training Platforms for Autistic Individuals
Computer-based job interview training, including virtual reality (VR) simulations, have gained popularity in recent years to support and aid autistic individuals, who face significant challenges and barriers in finding and maintaining employment. Although popular, these training systems often fail to resemble the complexity and dynamism of the employment interview, as the dialogue management for the virtual conversation agent either relies on choosing from a menu of prespecified answers, or dialogue processing is based on keyword extraction from the transcribed speech of the interviewee, which depends on the interview script. We address this limitation through automated dialogue act classification via transfer learning. This allows for recognizing intent from user speech, independent of the domain of the interview. We also redress the lack of training data for a domain general job interview dialogue act classifier by providing an original dataset with responses to interview questions within a virtual job interview platform from 22 autistic participants. Participants’ responses to a customized interview script were transcribed to text and annotated according to a custom 13-class dialogue act scheme. The best classifier was a fine-tuned bidirectional encoder representations from transformers (BERT) model, with an f1-score of 87%.  more » « less
Award ID(s):
2217621
NSF-PAR ID:
10422406
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Signals
Volume:
4
Issue:
2
ISSN:
2624-6120
Page Range / eLocation ID:
359 to 380
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Employment outcomes for autistic 1 individuals are often poorer relative to their neurotypical (NT) peers, resulting in a greater need for other forms of financial and social support. While a great deal of work has focused on developing interventions for autistic children, relatively less attention has been paid to directly addressing the employment challenges faced by autistic adults. One key impediment to autistic individuals securing employment is the job interview. Autistic individuals often experience anxiety in interview situations, particularly with open-ended questions and unexpected interruptions. They also exhibit atypical gaze patterns that may be perceived as, but not necessarily indicative of, disinterest or inattention. In response, we developed a closed-loop adaptive virtual reality (VR)–based job interview training platform, which we have named Career Interview Readiness in VR (CIRVR). CIRVR is designed to provide an engaging, adaptive, and individualized experience to practice and refine interviewing skills in a less anxiety-inducing virtual context. CIRVR contains a real-time physiology-based stress detection module, as well as a real-time gaze detection module, to permit individualized adaptation. We also present the first prototype of the CIRVR Dashboard, which provides visualizations of data to help autistic individuals as well as potential employers and job coaches make sense of the data gathered from interview sessions. We conducted a feasibility study with 9 autistic and 8 NT individuals to assess the preliminary usability and feasibility of CIRVR. Results showed differences in perceived usability of the system between autistic and NT participants, and higher levels of stress in autistic individuals during interviews. Participants across both groups reported satisfaction with CIRVR and the structure of the interview. These findings and feedback will support future work in improving CIRVR’s features in hopes for it to be a valuable tool to support autistic job candidates as well as their potential employers. 
    more » « less
  2. Antona, M ; null (Ed.)
    Studies show that young autistic adults are under- or unemployed, with almost half never holding a paying job in their 20’s. Unemployment within this population leads to decreased personal growth and increased dependence on caregivers. Research suggests that the interview process is one of the largest barriers to employment for this population. Autistic individuals often struggle with emotion regulation, which can be exacerbated by the interview process. To address this, we propose the use of a stress detection model in conjunction with a virtual reality interview simulator. This combination will allow for the interview to adapt to the state of the participant to improve the skills and engagement of the user and positively influence their comfort level. Data regarding negative affective responses to categories of questions can also be used to inform employers on better interviewing techniques. A model was designed using data obtained from neurotypical participants completing a modified Computerized Paced Serial Addition Task (PASAT-C) and evaluated on a dataset obtained from Autistic participants who took part in a simulated interview. Agreement between the model and ground truth was compared based on Pearson correlation coefficients. It was found that was r(289) = 0.28, which was statistically significant (p < .001; CI: 0.17 to 0.38). Our preliminary results provide evidence for the validity of observer-based labeling of data captured using a wrist-worn physiological sensor. 
    more » « less
  3. Antona, M ; null (Ed.)
    Employment of autistic individuals is strikingly low in relation to the skill level and capabilities of this population. Roughly 65% of autistic adults are either unemployed or underemployed relative to their abilities but there is increasing recognition that this number could be greatly improved through empowering autistic individuals while simultaneously providing a boost to the economy. Much of this disparity can be attributed in part to the lack of awareness and understanding among employers regarding behavior of autistic individuals during the hiring process. Most notably, the job interview—where strong eye contact is traditionally expected but can be extremely uncomfortable for autistic individuals—presents an unreasonable initial barrier to employment for many. The current work presents a data visualization dashboard that is populated with quantitative data (including eye tracking data) captured during simulated job interviews using a novel interview simulator called Career Interview Readiness in Virtual Reality (CIRVR). We conducted a brief series of case studies wherein autistic individuals who took part in a CIRVR interview and other key stakeholders provided lived experiences and qualitative insights into the most effective design and application of such data visualization dashboard. We conclude with a discussion of the role of information related to visual attention in job interviews with an emphasis on the importance of descriptive rather than prescriptive interpretation. 
    more » « less
  4. Mitrovic, Antonija ; Bosch, Nigel (Ed.)
    Classroom environments are challenging for artificially intelligent agents primarily because classroom noise dilutes the interpretability and usefulness of gathered data. This problem is exacerbated when groups of students participate in collaborative problem solving (CPS). Here, we examine how well six popular microphones capture audio from individual groups. A primary usage of audio data is automatic speech recognition (ASR), therefore we evaluate our recordings by examining the accuracy of downstream ASR using the Google Cloud Platform. We simultaneously captured the audio of all microphones for 11 unique groups of three participants first reading a prepared script, and then participating in a collaborative problem solving exercise. We vary participants, noise conditions, and speech contexts. Transcribed speech was evaluated using word error rate (WER). We find that scripted speech is transcribed with a surprisingly high degree of accuracy across groups (average WER = 0.114, SD = 0.044). However, the CPS task was much more difficult (average WER = 0.570, SD = 0.143). We found most microphones were robust to background noise below a certain threshold, but the AT-Cardioid and ProCon microphones were more robust to higher noise levels. Finally, an analysis of errors revealed that most errors were due to the ASR missing words/phrases, rather than mistranscribing them. We conclude with recommendations based on our observations. 
    more » « less
  5. This Work-in-Progress paper investigates how students participating in a chemical engineering (ChE) Research Experience for Undergraduates (REU) program conceptualize and make plans for research projects. The National Science Foundation has invested substantial financial resources in REU programs, which allow undergraduate students the opportunity to work with faculty in their labs and to conduct hands-on experiments. Prior research has shown that REU programs have an impact on students’ perceptions of their research skills, often measured through the Undergraduate Research Student Self-Assessment (URSSA) survey. However, few evaluation and research studies have gone beyond perception data to include direct measures of students’ gains from program participation. This work-in-progress describes efforts to evaluate the impact of an REU on students’ conceptualization and planning of research studies using a pre-post semi-structured interview process. The construct being investigated for this study is planning, which has been espoused as a critical step in the self-regulated learning (SRL) process (Winne & Perry, 2000; Zimmerman, 2008). Students who effectively self-regulate demonstrate higher levels of achievement and comprehension (Dignath & Büttner, 2008), and (arguably) work efficiency. Planning is also a critical step in large projects, such as research (Dvir & Lechler, 2004). Those who effectively plan their projects make consistent progress and are more likely to achieve project success (Dvir, Raz, & Shenhar, 2003). Prior REU research has been important in demonstrating some positive impacts of REU programs, but it is time to dig deeper into the potential benefits to REU participation. Many REU students are included in weekly lab meetings, and thus potentially take part in the planning process for research projects. Thus, the research question explored here is: How do REU participants conceptualize and make plans for research projects? The study was conducted in the ChE REU program at a large, mid-Atlantic research-oriented university during the summer of 2018. Sixteen students in the program participated in the study, which entailed them completing a planning task followed by a semi-structured interview at the start and the end of the REU program. During each session, participants read a case statement that asked them to outline a plan in writing for a research project from beginning to end. Using semi-structured interview procedures, their written outlines were then verbally described. The verbalizations were recorded and transcribed. Two members of the research team are currently analyzing the responses using an open coding process to gain familiarity with the transcripts. The data will be recoded based on the initial open coding and in line with a self-regulatory and project-management framework. Results: Coding is underway, preliminary results will be ready by the draft submission deadline. The methods employed in this study might prove fruitful in understanding the direct impact on students’ knowledge, rather than relying on their perceptions of gains. Future research could investigate differences in students’ research plans based on prior research experience, research intensity of students’ home institutions, and how their plans may be impacted by training. 
    more » « less