Plasmonic response in metals, defined as the ability to support subwavelength confinement of surface plasmon modes, is typically limited to a narrow frequency range below the metals’ plasma frequency. This places severe limitations on the operational wavelengths of plasmonic materials and devices. However, when the volume of a metal film is massively decreased, highly confined quasi-two-dimensional surface plasmon modes can be supported out to wavelengths well beyond the plasma wavelength. While this has, thus far, been achieved using ultrathin (nm-scale) metals, such films are quite difficult to realize and suffer from even higher losses than bulk plasmonic films. To extend the plasmonic response to the infrared, here we introduce the concept of metaplasmonics, representing a novel plasmonic modality with a host of appealing properties. By fabricating and characterizing a series of metaplasmonic nanoribbons, we demonstrate large confinement, high-quality factors, and large near-field enhancements across a broad wavelength range, extending well beyond the limited bandwidth of traditional plasmonic materials. We demonstrate 35× plasmon wavelength reduction, and numerical simulations suggest that further wavelength reduction, up to a factor of 150, is achievable using our approach. The demonstration of the metaplasmonics paradigm offers a promising path to fill the near- and mid-infrared technological gap for high-quality plasmonic materials and provides a new material system to study the effects of extreme plasmonic confinement for applications in nonlinear and quantum plasmonics.
more »
« less
Photoinduced electric effects in various plasmonic materials
Abstract Photoinduced voltages associated with surface plasmon polariton excitations are studied both theoretically and experimentally in various plasmonic systems as the function of material, wavelength, and type of structure. Experimental photovoltage normalized to the absorbed power shows a general decrease upon an increase in the wavelength, enhancement in the nanostructured samples, and a strong variation in the magnitude as a function of the material, which are not in line with the theoretical predictions of the simple plasmonic pressure approach. The results can be used for clarification of the mechanisms and further development of an adequate theoretical approach to the plasmon drag effect.
more »
« less
- Award ID(s):
- 2112595
- PAR ID:
- 10422745
- Date Published:
- Journal Name:
- Journal of Physics: Condensed Matter
- Volume:
- 34
- Issue:
- 45
- ISSN:
- 0953-8984
- Page Range / eLocation ID:
- 455301
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Surface plasmon resonance (SPR) of nanostructured thin metal films (so-called nanoplasmonics) has attracted intense attention due to its versatility for optical sensing and chip-based device integration. Understanding the underlying physics and developing applications of nanoplasmonic devices with desirable optical properties, e.g. intensity of light scattering and high refractive index (RI) sensitivity at the perforated metal film, is crucial for practical uses in physics, biomedical detection, and environmental monitoring. This work presents a semi-analytical model that enables decomposition and quantitative analysis of surface plasmon generation at a new complex nanoledge aperture structure under plane-wave illumination, thus providing insight on how to optimize plasmonic devices for optimal plasmonic generation efficiencies and RI sensitivity. A factor analysis of parameters (geometric, dielectric-RI, and incident wavelength) relevant to surface plasmon generation is quantitatively investigated to predict the surface plasmon polariton (SPP) generation efficiency. In concert with the analytical treatment, a finite-difference time-domain (FDTD) simulation is used to model the optical transmission spectra and RI sensitivity as a function of the nanoledge device's geometric parameters, and it shows good agreement with the analytical model. Further validation of the analytical approach is provided by fabricating subwavelength nanoledge devices and testing their optical transmission and RI sensitivity.more » « less
-
Routine investigations of plasmonic phenomena at the quantum level present a formidable computational challenge due to the large system sizes and ultrafast timescales involved. This Feature Article highlights the use of density functional tight-binding (DFTB), particularly its real-time time-dependent formulation (RT-TDDFTB), as a tractable approach to study plasmonic nanostructures from a purely quantum mechanical purview. We begin by outlining the theoretical framework and limitations of DFTB, emphasizing its efficiency in modeling systems with thousands of atoms over picosecond timescales. Applications of RT-TDDFTB are then explored in the context of optical absorption, nonlinear harmonic generation, and plasmon-mediated photocatalysis. We demonstrate how DFTB can reconcile classical and quantum descriptions of plasmonic behavior, capturing key phenomena such as size-dependent plasmon shifts and plasmon coupling in nanoparticle assemblies. Finally, we showcase DFTB’s ability to model hot carrier generation and reaction dynamics in plasmon-driven H2 dissociation, underscoring its potential to model photocatalytic processes. Collectively, these studies establish DFTB as a powerful, yet computationally efficient tool to probe the emergent physics of materials at the limits of space and time.more » « less
-
Abstract Plasmonic structural color, in which vivid colors are generated via resonant nanostructures made of common plasmonic materials, such as noble metals have fueled worldwide interest in backlight-free displays. However, plasmonic colors that were withstanding ultrahigh temperatures without damage remain an unmet challenge due to the low melting point of noble metals. Here, we report the refractory hafnium nitride (HfN) plasmonic crystals that can generate full-visible color with a high image resolution of ∼63,500 dpi while withstanding a high temperature (900 °C). Plasmonic colors that reflect visible light could be attributed to the unique features in plasmonic HfN, a high bulk plasmon frequency of 3.1 eV, whichcould support localized surface plasmon resonance (LSPR) in the visible range. By tuning the wavelength of the LSPR, the reflective optical response can be controlled to generate the colors from blue to red across a wide gamut. The novel refractory plasmonic colors pave the way for emerging applications ranging from reflective displays to solar energy harvesting systems.more » « less
-
Programmable manipulation of inorganic–organic interfacial electronic properties of ligand-functionalized plasmonic nanoparticles (NPs) is the key parameter dictating their applications such as catalysis, photovoltaics, and biosensing. Here we report the localized surface plasmon resonance (LSPR) properties of gold triangular nanoprisms (Au TNPs) in solid state that are functionalized with dipolar, conjugated ligands. A library of thiocinnamate ligands with varying surface dipole moments were used to functionalize TNPs, which results in ∼150 nm reversible tunability of LSPR peak wavelength with significant peak broadening (∼230 meV). The highly adjustable chemical system of thiocinnamate ligands is capable of shifting the Au work function down to 2.4 eV versus vacuum, i.e., ∼2.9 eV lower than a clean Au (111) surface, and this work function can be modulated up to 3.3 eV, the largest value reported to date through the formation of organothiolate SAMs on Au. Interestingly, the magnitude of plasmonic responses and work function modulation is NP shape dependent. By combining first-principles calculations and experiments, we have established the mechanism of direct wave function delocalization of electrons residing near the Fermi level into hybrid electronic states that are mostly dictated by the inorganic–organic interfacial dipole moments. We determine that both interfacial dipole and hybrid electronic states, and vinyl conjugation together are the key to achieving such extraordinary changes in the optoelectronic properties of ligand-functionalized, plasmonic NPs. The present study provides a quantitative relationship describing how specifically constructed organic ligands can be used to control the interfacial properties of NPs and thus the plasmonic and electronic responses of these functional plasmonics for a wide range of plasmon-driven applications.more » « less
An official website of the United States government

