skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Degradation of floodplain integrity within the contiguous United States
Abstract Despite the numerous hydrological, geological, and ecological benefits produced by floodplain landscapes, floodplains continue to be degraded by human activities at a much higher rate than other landscape types. This large-scale landscape modification has been widely recognized, yet a comprehensive, national dataset quantifying the degree to which human activities are responsible for this degradation has not previously been evaluated. In this research, we analyze floodplain integrity for the contiguous United States by spatially quantifying the impact of anthropogenic stressors on almost 80,000 floodplain units. We demonstrate the prevalence of human modifications through widely available geospatial datasets, which we use to quantify indicators of floodplain integrity for five essential floodplain functions of flood attenuation, groundwater storage, habitat provision, sediment regulation, and organics and solute regulation. Our results show that floodplain degradation is spatially heterogeneous and that the integrity of nearly 70% of floodplains in the United States is poor. We highlight that quantifying the integrity of spatially explicit floodplain elements can allow for restoration efforts to be targeted to the areas in most desperate need of preservation.  more » « less
Award ID(s):
2115169 2142761
PAR ID:
10422797
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Earth & Environment
Volume:
4
Issue:
1
ISSN:
2662-4435
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Amazonia’s floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region’s floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon’s tree diversity and its function. 
    more » « less
  2. Abstract Floodplains provide critical ecosystem services; however, loss of natural floodplain functions caused by human alterations increase flood risks and lead to massive loss of life and property. Despite recent calls for improved floodplain protection and management, a comprehensive, global-scale assessment quantifying human floodplain alterations does not exist. We developed the first publicly available global dataset that quantifies human alterations in 15 million km2floodplains along 520 major river basins during the recent 27 years (1992–2019) at 250-m resolution. To maximize the reuse of our dataset and advance the open science of human floodplain alteration, we developed three web-based programming tools supported with tutorials and step-by-step audiovisual instructions. Our data reveal a significant loss of natural floodplains worldwide with 460,000 km2of new agricultural and 140,000 km2of new developed areas between 1992 and 2019. This dataset offers critical new insights into how floodplains are being destroyed, which will help decision-makers to reinforce strategies to conserve and restore floodplain functions and habitat. 
    more » « less
  3. Abstract Floodplains provide essential ecosystem functions, yet >80% of European and North American floodplains are substantially modified. Despite floodplain changes over the past century, comprehensive, long-term land use change data within large river basin floodplains are limited. Long-term land use data can be used to quantify floodplain functions and provide spatially explicit information for management, restoration, and flood-risk mitigation. We present a comprehensive dataset quantifying floodplain land use change along the 3.3 million km2Mississippi River Basin (MRB) covering 60 years (1941–2000) at 250-m resolution. We developed four unique products as part of this work, a(n): (i) Google Earth Engine interactive map visualization interface, (ii) Python code that runs in any internet browser, (iii) online tutorial with visualizations facilitating classroom code application, and (iv) instructional video demonstrating code application and database reproduction. Our data show that MRB’s natural floodplain ecosystems have been substantially altered to agricultural and developed land uses. These products will support MRB resilience and sustainability goals by advancing data-driven decision making on floodplain restoration, buyout, and conservation scenarios. 
    more » « less
  4. Development patterns and climate change are contributing to increasing flood risk across the United States. Limiting development in floodplains mitigates risk by reducing the assets and population exposed to flooding. Here, we develop two indexes measuring floodplain development for 18,548 communities across the continental United States. We combine land use, impervious surface, and housing data with regulatory flood maps to determine what proportion of new development has taken place in the floodplain. Nationwide from 2001 to 2019, 2.1 million acres of floodplain land were developed, and 844,000 residential properties were built in the floodplain. However, contrary to conventional perceptions of rampant floodplain development, just 26% of communities nationwide have developed in floodplains more than would be expected given the hazard they face. The indexes and the analyses they enable can help guide targeted interventions to improve flood risk management, to explore underlying drivers of flood exposure, and to inform how local‐to‐federal policy choices can be leveraged to limit hazardous development. 
    more » « less
  5. Abstract Floodplains are essential ecosystems that provide a variety of economic, hydrologic, and ecologic services. Within floodplains, surface water‐groundwater exchange plays an important role in facilitating biogeochemical processes and can have a strong influence on stream hydrology through infiltration or discharge of water. These functions can be difficult to assess due to the heterogeneity of floodplains and monitoring constraints, so numerical models are useful tools to estimate fluxes, especially at large spatial extents. In this study, we use the SWAT+ (Soil and Water Assessment Tool) ecohydrological model to quantify magnitudes and spatiotemporal patterns of floodplain surface water‐groundwater exchange in a mountainous watershed using an updated version of thegwflowmodule that directly calculates floodplain‐aquifer exchange rates during periods of floodplain inundation. Thegwflowmodule is a spatially distributed groundwater modelling subroutine within the SWAT+ code that uses a gridded network and physically based equations to predict groundwater storage, groundwater head, and groundwater fluxes. We used SWAT+ to model the 7516 km2Colorado River headwaters watershed and streamflow data from USGS gages for calibration and testing. Models that included floodplain‐groundwater interactions outperformed those without such interactions and provided valuable information about floodplain exchange rates and volumes. Our analyses on the location of floodplain fluxes in the watershed also show that wider areas of floodplains, “beads” (e.g., like beads on a necklace), exchanged a higher net and per area volume of water, as well as higher rates of exchange, compared to narrower areas, “strings.” Study results show that floodplain channel‐groundwater exchange is a valuable process to include in hydrologic models, and model outputs could inform land conservation practises by indicating priority locations, such as beads, where substantial hydrologic exchange occurs. 
    more » « less