skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Characterization of a novel sRNA contributing to biofilm formation in Salmonella enterica serovar Typhimurium
Small RNAs (sRNAs) are short noncoding RNAs of ~50-200 nucleotides believed to primarily function in regulating crucial activities in bacteria during periods of cellular stress. This study examined the relevance of specific sRNAs on biofilm formation in nutrient starved Salmonella enterica serovar Typhimurium. Eight unique sRNAs were selected for deletion primarily based on their genomic location and/or putative targets. Quantitative and qualitative analyses confirm one of these, sRNA1186573, is required for efficient biofilm formation in S. enterica further highlighting the significance of sRNAs during Salmonella stress response.  more » « less
Award ID(s):
2219900 1350064
PAR ID:
10423594
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
microPublication Biology
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Neuwirth, Catherine (Ed.)
    An increasingly apparent role of noncoding RNA (ncRNAs) is to coordinate gene expression during environmental stress. A mounting body of evidence implicates small RNAs (sRNAs) as key drivers of Salmonella stress survival. Generally thought to be 50–500 nucleotides in length and to occur in intergenic regions, sRNAs typically regulate protein expression through base pairing with mRNA targets. In this work, through employing a refined definition of sRNAs allowing for shorter sequences and sRNA loci to overlap with annotated protein-coding gene loci, we have identified 475 previously unannotated sRNAs that are significantly differentially expressed during carbon starvation (C-starvation). Northern blotting and quantitative RT-PCRs confirm the expressions and identities of several of these novel sRNAs, and our computational analyses find the majority to be highly conserved and structurally related to known sRNAs. Importantly, we show that deletion of one of the sRNAs dynamically expressed during C-starvation, sRNA4130247, significantly impairs the Salmonella C-starvation response (CSR), confirming its involvement in the Salmonella CSR. In conclusion, the work presented here provides the first-ever characterization of intragenic sRNAs in Salmonella, experimentally confirms that sRNAs dynamically expressed during the CSR are directly involved in stress survival, and more than doubles the Salmonella enterica sRNAs described to date. 
    more » « less
  2. Noncoding RNAs (ncRNAs) play key roles in the regulation of important pathways, including cellular growth, stress management, signaling, and biofilm formation. Sulfate-reducing bacteria (SRB) contribute to huge economic losses causing microbial-induced corrosion through biofilms on metal surfaces. To effectively combat the challenges posed by SRB, it is essential to understand their molecular mechanisms of biofilm formation. This study aimed to identify ncRNAs in the genome of a model SRB, Oleidesulfovibrio alaskensis G20 (OA G20). Three in silico approaches revealed genome-wide distribution of 37 ncRNAs excluding tRNAs in the OA G20. These ncRNAs belonged to 18 different Rfam families. This study identified riboswitches, sRNAs, RNP, and SRP. The analysis revealed that these ncRNAs could play key roles in the regulation of several pathways of biosynthesis and transport involved in biofilm formation by OA G20. Three sRNAs, Pseudomonas P10, Hammerhead type II, and sX4, which were found in OA G20, are rare and their roles have not been determined in SRB. These results suggest that applying various computational methods could enrich the results and lead to the discovery of additional novel ncRNAs, which could lead to understanding the “rules of life of OA G20” during biofilm formation. 
    more » « less
  3. ABSTRACT SalmonellaOuter Membrane Vesicles (OMVs) were recently shown to inhibit P22 bacteriophage infection. Furthermore, despite there being several published reports now independently describing (1) the marked prevalence of tRFs within secreted vesicle transcriptomes and (2) roles for specific tRFs in facilitating/inhibiting viral replication, there have been no examinations of the effects of vesicle-secreted tRFs on viral infection reported to date. Notably, while specific tRFs have been reported in a number of bacteria, the tRFs expressed by salmonellae have not been previously characterized. As such, we recently screened small RNA-seq datasets for the presence of recurrent, specifically excised tRFs and identified 31 recurrent, relatively abundant tRFs expressed bySalmonella entericaserovar Typhimurium (SL1344). What’s more, we findS. Typhimurium OMVs contain significant levels of tRFs highly complementary to knownSalmonella enterica-infecting bacteriophage with 17 of 31 tRFs bearing marked complementarity to at least one knownSalmonella enterica-infecting phage (averaging 97.4% complementarity over 22.9 nt). Most notably, tRNA-Thr-CGT-1-1, 44-73, bears 100% sequence complementary over its entire 30 nt length to 29 distinct, annotatedSalmonella enterica-infecting bacteriophage including P22. Importantly, we find inhibiting this tRF in secreted OMVs improves P22 infectivity in a dose dependent manner whereas raising OMV tRF levels conversely inhibits P22 infectivity. Furthermore, we find P22 phage pre-incubation with OMVs isolated from naïve, control SL1344S. Typhimurium, successfully rescues the ability ofS. Typhimurium transformed with a specific tRNA-Thr-CGT-1-1, 44-73 tRF inhibitor to defend against P22. Collectively, these experiments confirm tRFs secreted inS. Typhimurium OMVs are directly involved with and required for the ability of OMVs to defend against bacteriophage predation. As we find the majority of OMV tRFs are highly complementary to an array of knownSalmonella enterica-infecting bacteriophage, we suggest OMV tRFs may primarily function as a broadly acting, previously uncharacterized innate antiviral defense. 
    more » « less
  4. Ellermeier, Craig D (Ed.)
    ABSTRACT Oxidative stress induces a wide range of cellular damage, often causing disease and cell death. While many organisms are susceptible to the effects of oxidative stress, haloarchaea have adapted to be highly resistant. Several aspects of the haloarchaeal oxidative stress response have been characterized; however, little is known about the impacts of oxidative stress at the translation level. Using the model archaeonHaloferax volcanii, we performed RNA-seq and ribosome profiling (Ribo-seq) to characterize the global translation landscape during oxidative stress. We identified 281 genes with differential translation efficiency (TE). Downregulated genes were enriched in ribosomal and translation proteins, in addition to peroxidases and genes involved in the TCA cycle. We also identified 42 small noncoding RNAs (sRNAs) with ribosome occupancy. Size distributions of ribosome footprints revealed distinct patterns for coding and noncoding genes, with 12 sRNAs matching the pattern of coding genes, and mass spectrometry confirming the presence of seven small proteins encoded by these sRNAs. However, the majority of sRNAs with ribosome occupancy had no evidence of coding potential. Of these ribosome-associated sRNAs, 12 had differential ribosome occupancy or TE during oxidative stress, suggesting that they may play a regulatory role during the oxidative stress response. Our findings on ribosomal regulation during oxidative stress, coupled with potential roles for ribosome-associated noncoding sRNAs and sRNA-derived small proteins inH. volcanii, revealed additional regulatory layers and underscored the multifaceted architecture of stress-responsive regulatory networks.IMPORTANCEArchaea are found in diverse environments, including as members of the human microbiome, and are known to play essential ecological roles in major geochemical cycles. The study of archaeal biology has expanded our understanding of the evolution of eukaryotes, uncovered novel biological systems, and revealed new opportunities for applications in biotechnology and bioremediation. Many archaeal systems, however, remain poorly characterized. UsingHaloferax volcaniias a model, we investigated the global translation landscape during oxidative stress. Our findings expand current knowledge of translational regulation in archaea and further illustrate the complexity of stress-responsive gene regulation. 
    more » « less
  5. Balaban, Nathalie (Ed.)
    Bacterial biofilms are among the most abundant multicellular structures on Earth and play essential roles in a wide range of ecological, medical, and industrial processes. However, general principles that govern the emergence of biofilm architecture across different species remain unknown. Here, we combine experiments, simulations, and statistical analysis to identify shared biophysical mechanisms that determine early biofilm architecture development at the single-cell level, for the species Vibrio cholerae , Escherichia coli , Salmonella enterica , and Pseudomonas aeruginosa grown as microcolonies in flow chambers. Our data-driven analysis reveals that despite the many molecular differences between these species, the biofilm architecture differences can be described by only 2 control parameters: cellular aspect ratio and cell density. Further experiments using single-species mutants for which the cell aspect ratio and the cell density are systematically varied, and mechanistic simulations show that tuning these 2 control parameters reproduces biofilm architectures of different species. Altogether, our results show that biofilm microcolony architecture is determined by mechanical cell–cell interactions, which are conserved across different species. 
    more » « less