skip to main content

Title: High spin polarization and spin signal enhancement in non-local spin valves with Co–Fe alloy injectors and detectors
For applications such as spin accumulation sensors for next-generation hard disk drive read heads, and for fundamental research, it is desirable to increase the spin signal in metallic non-local spin valves, which are central devices in spintronics. To this end, here, we report on the integration of high-spin-polarization Co–Fe binary alloy ferromagnetic injectors and detectors in Al-based non-local spin valves. Room-temperature deposition on amorphous substrates from an alloy target is shown to generate smooth, polycrystalline (110-textured), solid-solution body-centered-cubic Co75Fe25 films, which we characterize by energy dispersive x-ray spectroscopy, x-ray diffraction, x-ray reflectivity, atomic force microscopy, and electronic transport. Simple integration into transparent-interface Al non-local spin valves is then shown to realize up to a factor of ∼5 enhancement of the spin signal relative to Co, with full quantitative analysis yielding strikingly temperature-independent current spin polarizations exceeding 60%. We make a detailed quantitative comparison of these values with prior literature, concluding that Co–Fe alloys present a remarkably facile route to higher spin polarization and spin signals in non-local spin valves, with minimal barrier to adoption.  more » « less
Award ID(s):
2103711 2011401
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
APL Materials
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Fe‐Al‐bearing bridgmanite may be the dominant host for ferric iron in Earth's lower mantle. Here we report the synthesis of (Mg0.5Fe3+0.5)(Al0.5Si0.5)O3bridgmanite (FA50) with the highest Fe3+‐Al3+coupled substitution known to date. X‐ray diffraction measurements showed that at ambient conditions, the FA50 adopted the LiNbO3structure. Upon compression at room temperature to 18 GPa, it transformed back into the bridgmanite structure, which remained stable up to 102 GPa and 2,600 K. Fitting Birch‐Murnaghan equation of state of FA50 bridgmanite yieldsV0 = 172.1(4) Å3,K0 = 229(4) GPa withK0′ = 4(fixed). The calculated bulk sound velocity of the FA50 bridgmanite is ~7.7% lower than MgSiO3bridgmanite, mainly because the presence of ferric iron increases the unit‐cell mass by 15.5%. This difference likely represents the upper limit of sound velocity anomaly introduced by Fe3+‐Al3+substitution. X‐ray emission and synchrotron Mössbauer spectroscopy measurements showed that after laser annealing, ~6% of Fe3+cations exchanged with Al3+and underwent the high‐ to low‐spin transition at 59 GPa. The low‐spin proportion of Fe3+increased gradually with pressure and reached 17–31% at 80 GPa. Since the cation exchange and spin transition in this Fe3+‐Al3+‐enriched bridgmanite do not cause resolvable unit‐cell volume reduction, and the increase of low‐spin Fe3+fraction with pressure occurs gradually, the spin transition would not produce a distinct seismic signature in the lower mantle. However, it may influence iron partitioning and isotopic fractionation, thus introducing chemical heterogeneity in the lower mantle.

    more » « less
  2. Abstract We have carried out a combined theoretical and experimental investigation of FeCrVAl, and the effect of Mn and Co doping on its structural, magnetic, and electronic band properties. Our first principles calculations indicate that FeCrVAl, FeCr 0.5 Mn 0.5 VAl, and FeCr 0.5 Co 0.5 VAl exhibit nearly perfect spin polarization, which may be further enhanced by mechanical strain. At the same time, FeCrV 0.5 Mn 0.5 Al and FeCrV 0.5 Co 0.5 Al exhibit a relatively small value of spin polarization, making them less attractive for practical applications. Using arc melting and high vacuum annealing, we synthesized three compounds FeCrVAl, FeCr 0.5 Mn 0.5 VAl, and FeCr 0.5 Co 0.5 VAl, which are predicted to exhibit high spin polarization. The room temperature x-ray diffraction patterns of all samples are fitted with full B2 type disorder with a small amount of FeO 2 secondary phase. All samples show very small saturation magnetizations at room temperature. The thermomagnetic curves M(T) of FeCrVAl and FeCr 0.5 Co 0.5 VAl are similar to that of a paramagnetic material, whereas that of FeCr 0.5 Mn 0.5 VAl indicates ferrimagnetic behavior with the Curie temperature of 135 K. Our findings may be of interest for researchers working on Heusler compounds for spin-based electronic applications. 
    more » « less
  3. We have carried out a combined theoretical and experimental investigation of both stoichiometric and nonstoichiometric CoFeVGe alloys. In particular, we have investigated CoFeVGe, Co 1.25 Fe 0.75 VGe, Co 0.75 Fe 1.25 VGe, and CoFe 0.75 VGe bulk alloys. Our first principles calculations suggest that all four alloys show ferromagnetic order, where CoFeVGe, Co 1.25 Fe 0.75 VGe, and Co 0.75 Fe 1.25 VGe are highly spin polarized with spin polarization values of over 80%. However, the spin polarization value of CoFe 0.75 VGe is only about 60%. We have synthesized all four samples using arc melting and high-vacuum annealing at 600 °C for 48 hours. The room temperature x-ray diffraction of these samples exhibits a cubic crystal structure with disorder. All the samples show single magnetic transitions at their Curie temperatures, where the Curie temperature and high field (3T) magnetization are 288 K and 42 emu/g; 305 K and 1.5 emu/g; 238 K and 39 emu/g; and 306 K and 35 emu/g for CoFeVGe, Co 1.25 Fe 0.75 VGe, Co 0.75 Fe 1.25 VGe, and CoFe 0.75 VGe, respectively. 
    more » « less
  4. Abstract

    The Fe(II) spin crossover complex [Fe{H2B(pz)2}2(bipy)] (pz = pyrazol‐1‐yl, bipy = 2,2′‐bipyridine) can be locked in a largely low‐spin‐state configuration over a temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. This locking of the spin state is achieved for nanometer thin films of this complex in two distinct ways: through substrate interactions with dielectric substrates such as SiO2and Al2O3, or in powder samples by mixing with the strongly dipolar zwitterionicp‐benzoquinonemonoimine C6H2(—⋯ NH2)2(—⋯ O)2. Remarkably, it is found in both cases that incident X‐ray fluences then restore the [Fe{H2B(pz)2}2(bipy)] moiety to an electronic state characteristic of the high spin state at temperatures of 200 K to above room temperature; that is, well above the spin crossover transition temperature for the pristine powder, and well above the temperatures characteristic of light‐ or X‐ray‐induced excited‐spin‐state trapping. Heating slightly above room temperature allows the initial locked state to be restored. These findings, supported by theory, show how the spin crossover transition can be manipulated reversibly around room temperature by appropriate design of the electrostatic and chemical environment.

    more » « less
  5. Abstract

    We present the first theoretical and experimental evidence of time-resolved dynamic x-ray magnetic linear dichroism (XMLD) measurements of GHz magnetic precessions driven by ferromagnetic resonance in both metallic and insulating thin films. Our findings show a dynamic XMLD in both ferromagnetic Ni80Fe20and ferrimagnetic Ni0.65Zn0.35Al0.8Fe1.2O4for different measurement geometries and linear polarizations. A detailed analysis of the observed signals reveals the importance of separating different harmonic components in the dynamic signal in order to identify the XMLD response without the influence of competing contributions. In particular, RF magnetic resonance elicits a large dynamic XMLD response at the fundamental frequency under experimental geometries with oblique x-ray polarization. The geometric range and experimental sensitivity can be improved by isolating the 2ωFourier component of the dynamic response. These results illustrate the potential of dynamic XMLD and represent a milestone accomplishment toward the study of GHz spin dynamics in systems beyond ferromagnetic order.

    more » « less