skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bit-Stream Processing with No Bit-Stream: Efficient Software Simulation of Stochastic Vision Machines
Award ID(s):
2127780 2019511 2321840 2319198 2312517
PAR ID:
10423704
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the Great Lakes Symposium on VLSI
Page Range / eLocation ID:
273 to 279
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Few studies have explored the complex circuit simulation of stochastic and unary computing systems, which are referred to under the umbrella term of bit-stream processing. The computer simulation of multi-level cascaded circuits with reconvergent paths has not been largely examined in the context of bit-stream processing systems. This study addresses this gap and proposes a contingency table-based reconvergent path-aware simulation method for fast and efficient simulation of multi-level circuits. The proposed method exhibits significantly better runtime and accuracy. 
    more » « less
  2. Stochastic computing (SC) division circuits have gained importance in recent years compared to other arithmetic circuits due to their low complexity as a result of an accuracy tradeoff. Designing a division circuit is already complex in conventional binary-based hardware systems. Developing an accurate and efficient SC division circuit is an open research problem. Prior work proposed different SC division circuits by using multiplexers and JK-flip-flop units, which may require correlated or uncorrelated input bit-streams. This study is primarily centered on exploring a cost-effective and highly efficient bit-stream generator specifically designed for SC division circuits. In conjunction with this objective, we assess the performance of multiple bit-stream generators and analyze the impact of correlation on SC division. We compare different designs in terms of accuracy and hardware cost. Moreover, we discuss a low-cost and energy-efficient bit-stream generator via powers-of-2 Van der Corput (VDC) sequences. Among the tested sequence generators, our best results were achieved with VDC sequences. Our evaluation results demonstrate that the novel VDC-based design yields promising outputs, resulting in a 15.5% reduction in the area-delay product and an 18.05% saving in energy consumption for the same accuracy level compared to conventional bit-stream generators. Significantly, our investigation reveals that employing the proposed generator improves the precision compared to the state-of-the-art. We validate the proposed architecture with an image processing case study, achieving high PSNR and structural similarity values. 
    more » « less