skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: narrow-stencil framework for convergent numerical approximations of fully nonlinear second order PDEs
This article develops a unified general framework for designing convergent finite difference and discontinuous Galerkin methods for approximating viscosity and regular solutions of fully nonlinear second order PDEs. Unlike the well-known monotone (finite difference) framework, the proposed new framework allows for the use of narrow stencils and unstructured grids which makes it possible to construct high order methods. The general framework is based on the concepts of consistency and g-monotonicity which are both defined in terms of various numerical derivative operators. Specific methods that satisfy the framework are constructed using numerical moments. Admissibility, stability, and convergence properties are proved,and numerical experiments are provided along with some computer implementation details. For more information see https://ejde.math.txstate.edu/conf-proc/26/f1/abstr.html  more » « less
Award ID(s):
2111059
PAR ID:
10423837
Author(s) / Creator(s):
; ;
Publisher / Repository:
Department of Mathematics, Texas State University
Date Published:
Journal Name:
Electronic Journal of Differential Equations
Issue:
Conference 26
ISSN:
1072-6691
Page Range / eLocation ID:
59 to 95
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Fixed-point fast sweeping WENO methods are a class of efficient high-order numerical methods to solve steady-state solutions of hyperbolic partial differential equations (PDEs). The Gauss-Seidel iterations and alternating sweeping strategy are used to cover characteristics of hyperbolic PDEs in each sweeping order to achieve fast convergence rate to steady-state solutions. A nice property of fixed-point fast sweeping WENO methods which distinguishes them from other fast sweeping methods is that they are explicit and do not require inverse operation of nonlinear local systems. Hence, they are easy to be applied to a general hyperbolic system. To deal with the difficulties associated with numerical boundary treatment when high-order finite difference methods on a Cartesian mesh are used to solve hyperbolic PDEs on complex domains, inverse Lax-Wendroff (ILW) procedures were developed as a very effective approach in the literature. In this paper, we combine a fifth-order fixed-point fast sweeping WENO method with an ILW procedure to solve steady-state solution of hyperbolic conservation laws on complex computing regions. Numerical experiments are performed to test the method in solving various problems including the cases with the physical boundary not aligned with the grids. Numerical results show high-order accuracy and good performance of the method. Furthermore, the method is compared with the popular third-order total variation diminishing Runge-Kutta (TVD-RK3) time-marching method for steady-state computations. Numerical examples show that for most of examples, the fixed-point fast sweeping method saves more than half CPU time costs than TVD-RK3 to converge to steady-state solutions. 
    more » « less
  2. Abstract Rational approximation recently emerged as an efficient numerical tool for the solution of exterior wave propagation problems. Currently, this technique is limited to wave media which are invariant along the main propagation direction. We propose a new model order reduction-based approach for compressing unbounded waveguides with layered inclusions. It is based on the solution of a nonlinear rational least squares problem using the RKFIT method. We show that approximants can be converted into an accurate finite difference representation within a rational Krylov framework. Numerical experiments indicate that RKFIT computes more accurate grids than previous analytic approaches and even works in the presence of pronounced scattering resonances. Spectral adaptation effects allow for finite difference grids with dimensions near or even below the Nyquist limit. 
    more » « less
  3. We introduce a deep architecture named HoD-Net to enable high-order differentiability for deep learning. HoD-Net is based on and generalizes the complex-step finite difference (CSFD) method. While similar to classic finite difference, CSFD approaches the derivative of a function from a higher-dimension complex domain, leading to highly accurate and robust differentiation computation without numerical stability issues. This method can be coupled with backpropagation and adjoint perturbation methods for an efficient calculation of high-order derivatives. We show how this numerical scheme can be leveraged in challenging deep learning problems, such as high-order network training, deep learning-based physics simulation, and neural differential equations. 
    more » « less
  4. Nonstandard finite-difference (NSFD) methods, pioneered by R. E. Mickens, offer accurate and efficient solutions to various differential equation models in science and engineering. NSFD methods avoid numerical instabilities for large time steps, while numerically preserving important properties of exact solutions. However, most NSFD methods are only first-order accurate. This paper introduces two new classes of explicit second-order modified NSFD methods for solving n-dimensional autonomous dynamical systems. These explicit methods extend previous work by incorporating novel denominator functions to ensure both elementary stability and second-order accuracy. This paper also provides a detailed mathematical analysis and validates the methods through numerical simulations on various biological systems. 
    more » « less
  5. null (Ed.)
    In this paper, we develop and analyze finite difference methods for the 3D Maxwell’s equations in the time domain in three different types of linear dispersive media described as Debye, Lorentz and cold plasma. These methods are constructed by extending the Yee-Finite Difference Time Domain (FDTD) method to linear dispersive materials. We analyze the stability criterion for the FDTD schemes by using the energy method. Based on energy identities for the continuous models, we derive discrete energy estimates for the FDTD schemes for the three dispersive models. We also prove the convergence of the FDTD schemes with perfect electric conducting boundary conditions, which describes the second order accuracy of the methods in both time and space. The discrete divergence-free conditions of the FDTD schemes are studied. Lastly, numerical examples are given to demonstrate and confirm our results. 
    more » « less